F08 — Least-squares and Eigenvalue Problems (LAPACK)

Contents
1 Scope of the Chapter
2 Background to the Problems
2.1 Linear Least-squares Problems
2.2 Orthogonal Factorizations and Least-squares Problems
2.2.1 QR factorization e
222 LO factorization
2.2.3 QR factorization with column pivoting
2.2.4 Complete orthogonal factorization
2.2.5 Ofther factorizations
2.3 The Singular Value Decomposition
2.4 The Singular Value Decomposition and Least-squares Problems
2.5 Generalized Linear Least-squares Problems
2.6 Generalized Orthogonal Factorization and Generalized Linear Least-squares
Problems
2.6.1 Generalized QR Factorization,
2.6.2 Generalized RQ Factorization
2.6.3 Generalized Singular Value Decomposition (GSVD)
2.7 Symmetric Eigenvalue Problems
2.8 Generalized Symmetric-definite Eigenvalue Problems
2.9 Packed Storage for Symmetric Matrices
2.10 Band Matrices
2.11 Nonsymmetric Eigenvalue Problems
2.12 Generalized Nonsymmetric Eigenvalue Problem
2.13 The Sylvester Equation and the Generalized Sylvester Equation
2.14 Error and Perturbation Bounds and Condition Numbers
2.14.1 Least-squares problems
2.14.2 The singular value decomposition
2.14.3 The symmetric eigenproblem
2.14.4 The generalized symmetric-definite eigenproblem
2.14.5 The non-symmetric eigenproblem
2.14.6 Balancing and condition for the non-symmetric eigenproblem
2.14.7 The generalized non-symmetric eigenvalue problem
2.14.8 Balancing the generalized eigenvalue problem
2.14.9 Other problems
2.15 Block Partitioned Algorithms
3 Recommendations on Choice and Use of Available Routines

NAG Fortran Library Chapter Introduction
F08 — Least-squares and Eigenvalue Problems (LAPACK)

3.1 Available Routines e

3.1.1 Driver routines oo vt it e e e e
3.1.1.1 Linear least-squares problems (LLS)

[NP3657/21]

Introduction — F08

Introduction — F08 NAG Fortran Library Manual

F08.2

3.1.1.2 Generalized linear least-squares problems (LSE and GLM) 23

3.1.1.3 Symmetric eigenvalue problems (SEP) 23

3.1.1.4 Nonsymmetric eigenvalue problem (NEP) 23

3.1.1.5 Singular value decomposition (SVD) 24

3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP) 24

3.1.1.7 Generalized non-symmetric eigenvalue problem (GNEP) 24

3.1.1.8 Generalized singular value decomposition (GSVD) 24

3.1.2 Computational TOUtINESottt 24
3.1.2.1 Orthogonal factorizations 24

3.1.2.2 Generalized orthogonal factorizations 25

3.1.2.3 Singular value problems, 25

3.1.2.4 Generalized singular value decomposition 26

3.1.2.5 Symmetric eigenvalue problems 26

3.1.2.6 Generalized symmetric-definite eigenvalue problems 28

3.1.2.7 Nonsymmetric eigenvalue problems 29

3.1.2.8 Generalized non-symmetric eigenvalue problems 30

3.1.2.9 The Sylvester equation and the generalized Sylvester equation 32

3.2 NAG Names and LAPACK Names 32
3.3 Matrix Storage Schemes 33
3.3.1 Conventional Storage 33

332 Packed Storage 34

333 Band Storage e 35

3.3.4 Tridiagonal and bidiagonal matrices 35

3.3.5 Real diagonal elements of complex matrices 36

3.3.6 Representation of orthogonal or unitary matrices 36

3.4 Parameter Conventionsttt 36
3.4.1 Option parameters ottt e 36

3.4.2 Problem dimensions 36

34.3 Length of work arrays 37

3.4.4 Error-handling and the diagnostic parameter INFO 37
Decision Trees 38
4.1 General Purpose Routines (eigenvalues and eigenvectors) 38
4.2 General Purpose Routines (singular value decomposition) 44
Index 44
Routines Withdrawn or Scheduled for Withdrawal 51
References 51

[NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

1 Scope of the Chapter

This chapter provides routines for the solution of linear least-squares problems, eigenvalue problems and
singular value problems, as well as associated computations. It provides routines for:

— solution of linear least-squares problems
— solution of symmetric eigenvalue problems
— solution of non-symmetric eigenvalue problems
— solution of singular value problems
— solution of generalized symmetric-definite eigenvalue problems
— solution of generalized non-symmetric eigenvalue problems
— solution of generalized singular value problems
— solution of generalized linear least-squares problems
— matrix factorizations associated with the above problems
— estimating condition numbers of eigenvalue and eigenvector problems
— estimating the numerical rank of a matrix
— solution of the Sylvester matrix equation
Routines are provided for both real and complex data.

For a general introduction to the solution of linear least-squares problems, you should turn first to Chapter
F04. The decision trees, at the end of Chapter F04, direct you to the most appropriate routines in Chapters
F04 or FO8. Chapters FO4 and FO8 contain Black Box (or driver) routines which enable standard linear
least-squares problems to be solved by a call to a single routine.

For a general introduction to eigenvalue and singular value problems, you should turn first to Chapter F02.
The decision trees, at the end of Chapter F02, direct you to the most appropriate routines in Chapters F02
or FO8. Chapters F02 and FO8 contain Black Box (or driver) routines which enable standard types of
problem to be solved by a call to a single routine. Often routines in Chapter FO2 call Chapter FO8 routines
to perform the necessary computational tasks.

The routines in this chapter (FO8) handle only dense, band, tridiagonal and Hessenberg matrices (not
matrices with more specialized structures, or general sparse matrices). The tables in Section 3 and the
decision trees in Section 4 direct you to the most appropriate routines in Chapter FOS.

The routines in this chapter have all been derived from the LAPACK project (see Anderson ef al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

It is not expected that you will need to read all of the following sections, but rather you will pick out those
sections relevant to your particular problem.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least-squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion, for
example Golub and Van Loan (1996).

2.1 Linear Least-squares Problems
The linear least-squares problem is

minignize |6 — Ax||,, (1)

where 4 is an m by n matrix, b is a given m element vector and x is an n element solution vector.

[NP3657/21] F08.3

Introduction — F08 NAG Fortran Library Manual

In the most usual case m > n and rank(4) = n, so that 4 has full rank and in this case the solution to
problem (1) is unique; the problem is also referred to as finding a least-squares solution to an
overdetermined system of linear equations.

When m < n and rank(4) =m, there are an infinite number of solutions x which exactly satisfy
b—Ax =0. In this case it is often useful to find the unique solution x which minimizes ||x|,, and the
problem is referred to as finding a minimum norm solution to an underdetermined system of linear
equations.

In the general case when we may have rank(4) < min(m,n) — in other words, 4 may be rank-deficient —
we seek the minimum norm least-squares solution x which minimizes both ||x||, and ||b — Ax||,.

This chapter (FO8) contains driver routines to solve these problems with a single call, as well as
computational routines that can be combined with routines in Chapter FO7 to solve these linear least-
squares problems. Chapter FO4 also contains Black Box routines to solve these linear least-squares
problems in standard cases. The next two sections discuss the factorizations that can be used in the
solution of linear least-squares problems.

2.2 Orthogonal Factorizations and Least-squares Problems

A number of routines are provided for factorizing a general rectangular m by n matrix 4, as the product of
an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if Q' Q = I; a complex matrix Q is unitary if Q"'Q = 1. Orthogonal or
unitary matrices have the important property that they leave the 2-norm of a vector invariant, so that

[l = [1Oxll,,

if O is orthogonal or unitary. They usually help to maintain numerical stability because they do not
amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least-squares problems. They may also be used
to perform preliminary steps in the solution of eigenvalue or singular value problems, and are useful tools
in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by

AzQ(ﬁ), if m > n,

where R is an n by n upper triangular matrix and Q is an m by m orthogonal (or unitary) matrix. If 4 is of
full rank n, then R is non-singular. It is sometimes convenient to write the factorization as

4= (QIQ»(];)

which reduces to
A= 0O\R,
where O, consists of the first n columns of O, and O, the remaining m — n columns.
If m < n, R is trapezoidal, and the factorization can be written
A=Q(RR,), ifm<n,
where R; is upper triangular and R, is rectangular.

The QR factorization can be used to solve the linear least-squares problem (1) when m > n and 4 is of full
rank, since

B

— Rx
b — x|, = [|Q"b — 0" 4x|, = H (‘o)

2

where

F08.4 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

T
c:(cl): Orb o

] T
0, b
and c¢; is an n element vector. Then x is the solution of the upper triangular system
Rx=c 1-

The residual vector » is given by

r:b—Ax:Q<CO>.
2

The residual sum of squares ||r|,> may be computed without forming explicitly, since

17l = 116 = Ax[l, = llez]l;-

2.2.2 LQ factorization
The LQ factorization is given by

A=(L 00=(L 0)(8;):LQ1, it m<n,

where L is m by m lower triangular, Q is n by n orthogonal (or unitary), O, consists of the first m rows of
0, and O, the remaining n — m rows.

The LQ factorization of A4 is essentially the same as the QR factorization of AT (AH if 4 is complex), since

A=(L O)Q<:>AT:QT<LOT>.

The LQ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax = b where 4 is m by n with m < n and has rank m. The solution is given by

e QT<L_Olb>.

2.2.3 OR factorization with column pivoting

To solve a linear least-squares problem (1) when 4 is not of full rank, or the rank of 4 is in doubt, we can
perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by
A= Q(IS)PT, m > n,

where O and R are as before and P is a (real) permutation matrix, chosen (in general) so that
ril = |rpf = > |r

nn |

and moreover, for each £,

|rkk|2HRky'.j}2a]:k+1,,n

_(Rn Ri

R= (0 R22
where R;, is the leading k by & upper triangular sub-matrix of R then, in exact arithmetic, if rank(4) = &,
the whole of the sub-matrix R,, in rows and columns & + 1 to n would be zero. In numerical computation,

the aim must be to determine an index k, such that the leading sub-matrix R;; is well-conditioned, and R,
is negligible, so that

If we put

[NP3657/21] F08.5

Introduction — F08 NAG Fortran Library Manual

R— Riy R\ _ (Ru Rp
0 Ryn/) \ O 0)
Then £ is the effective rank of 4. See Golub and Van Loan (1996) for a further discussion of numerical

rank determination.

The so-called basic solution to the linear least-squares problem (1) can be obtained from this factorization

as
x=P Rl_llél
O b
where ¢, consists of just the first k& elements of ¢ = O'b.

2.2.4 Complete orthogonal factorization

The QR factorization with column pivoting does not enable us to compute a minimum norm solution to a
rank-deficient linear least-squares problem, unless R;, = 0. However, by applying for further orthogonal
(or unitary) transformations from the right to the upper trapezoidal matrix (R;; Ry,), Rj, can be
eliminated:

(R11 Ry,)Z: (T11 0)'

This gives the complete orthogonal factorization

AP_Q<TO11 8>ZT

from which the minimum norm solution can be obtained as
T ¢
x=pPz[| U).
("

The QL and RQ factorizations are given by

A—Q(g), if m>n,

2.2.5 Other factorizations

and
A=(0 R)Q, ifm<n.

The factorizations are less commonly used than either the QR or LQ factorizations described above, but
have applications in, for example, the computation of generalized QR factorizations.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix 4 is given by
A=Uxv", (A = UXV"in the complex case)

where U and V are orthogonal (unitary) and X' is an m by n diagonal matrix with real diagonal elements,
0;, such that

o202 2 O min(m,n) > 0.

The o; are the singular values of A and the first min(m,n) columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

Avi = o;U; and ATui = 0;V; (Or AHUI' = U,»V,-)
where u; and v; are the ith columns of U and V respectively.

The computation proceeds in the following stages.

F08.6 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

1. The matrix 4 is reduced to bidiagonal form 4 = U IBVIT if 4isreal (4 =U 1BV11{ if 4 is complex),
where U, and V' are orthogonal (unitary if 4 is complex), and B is real and upper bidiagonal when
m > n and lower bidiagonal when m < n, so that B is non-zero only on the main diagonal and either
on the first superdiagonal (if m > n) or the first subdiagonal (if m < n).

2. The SVD of the bidiagonal matrix B is computed as B = U,XV3, where U, and V', are orthogonal
and X' is diagonal as described above. The singular vectors of 4 are then U = U,U, and V = V| V5.

If m > n, it may be more efficient to first perform a QR factorization of 4, and then compute the SVD of
the n by n matrix R, since if A = QR and R = UXV", then the SVD of 4 is given by 4 = (QU) XV,

Similarly, if m < n, it may be more efficient to first perform an LQ factorization of 4.

This chapter supports two primary algorithms for computing the SVD of a bidiagonal matrix. They are:
(1) the divide and conquer algorithm;

(i1) the QR algorithm.

The divide and conquer algorithm is much faster than the QR algorithm if singular vectors of large
matrices are required.

2.4 The Singular Value Decomposition and Least-squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least-squares
problem (1). The effective rank, &, of 4 can be determined as the number of singular values which exceed

a suitable threshold. Let 5 be the leading & by k sub-matrix of X', and ¥ be the matrix consisting of the
first £ columns of . Then the solution is given by

NP
x=VX ¢,

where ¢; consists of the first £ elements of ¢ = U Tp = UZTU lTb.

2.5 Generalized Linear Least-squares Problems

The simple type of linear least-squares problem described in Section 2.1 can be generalized in various
ways.

1. Linear least-squares problems with equality constraints:
find x to minimize S = ||c — Ax||22 subject to Bx =d,

where 4 is m by n and B is p by n, with p < n < m + p. The equations Bx = d may be regarded as a
set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

(5)=(3)

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A4) are to be solved in a least-squares sense. The problem has a unique solution on the

1; has full column rank #. (For linear least-
squares problems with inequality constraints, refer to Chapter E04.)

assumptions that B has full row rank p and the matrix

2. General Gauss—Markov linear model problems:
minimize ||y||, subjectto d = Ax+ By,

where 4 is m by n and B is m by p, with n <m <n+p. When B = I, the problem reduces to an
ordinary linear least-squares problem. When B is square and non-singular, it is equivalent to a
weighted linear least-squares problem:

find x to minimize HBi1 (d — 4x)||,-

The problem has a unique solution on the assumptions that 4 has full column rank #n, and the matrix

[NP3657/21] F08.7

Introduction — F08 NAG Fortran Library Manual

(4, B) has full row rank m. Unless B is diagonal, for numerical stability it is generally preferable to
solve a weighted linear least-squares problem as a general Gauss—Markov linear model problem.

2.6 Generalized Orthogonal Factorization and Generalized Linear Least-squares
Problems

2.6.1 Generalized QR Factorization

The generalized QR (GQR) factorization of an » by m matrix 4 and an »n by p matrix B is given by the
pair of factorizations

A=QR ad B=0QTZ,

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if 4 and B are
complex). R has the form

or

R:n(}g11 Ry,), if n<m,
where R;; is upper triangular. 7 has the form
p—n n
T=u(0 1,) ifn<p
or

p

r=n-—r|(Tu , if n>p,
p\ Ty

where T, or T,; is upper triangular.

Note that if B is square and non-singular, the GQR factorization of 4 and B implicitly gives the QR
factorization of the matrix B~ '4:

B ' =Z7"(T"'R)
without explicitly computing the matrix inverse B~' or the product B~'A4.

The GQR factorization can be used to solve the general (Gauss—Markov) linear model problem (GLM)
(see Section 2.5). Using the GQR factorization of 4 and B, we rewrite the equation d = Ax + By as

0%d =0%4x+ 0By
=Rx+TZy.
We partition this as

m p—n+m n—m

(dl> — m Rll x+ m Tll T12 <yl>
dy n—m\ O n—m 0 Ty Y2
di\ _ or (J’1> —

=0d, and =Z7y.
(d2> © B%) 4

The GLM problem is solved by setting

where

y1=0 and y,=Tyd,

F08.8 [NP3657/21]

FO8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

from which we obtain the desired solutions

x=Ry!(d; — Tpy,) and y:ZT()fl).

2.6.2 Generalized RQ Factorization

The generalized RQ (GRQ) factorization of an m by n matrix 4 and a p by » matrix B is given by the
pair of factorizations

A=RQ, B=ZTQ

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if 4 and B are
complex). R has the form

or

R=m=n(Riu) ifm>n,
n \ Ry

where R, or R,; is upper triangular. 7 has the form

= "(Tu), ifp>n,
p—n\ 0

p n—p
T:p(T11 T12>’ if p <n,

or

where T4; is upper triangular.

Note that if B is square and non-singular, the GRQ factorization of 4 and B implicitly gives the RQ
factorization of the matrix 4B~ ':

AB™' = (RT HZ"
without explicitly computing the matrix B! or the product AB7".

The GRQ factorization can be used to solve the linear equality-constrained least-squares problem (LSE)
(see Section 2.5). We use the GRQ factorization of B and A (note that B and 4 have swapped roles),
written as

B=TQ and A4=ZRQ.
We write the linear equality constraints Bx = d as
TOx =d,

n—p p X X
1) _ 1
p< 0 T12> <x2) =d where <x2)

Therefore x, is the solution of the upper triangular system

T|2)C2 =d.

which we partition as:

O,

[NP3657/21] F08.9

Introduction — F08 NAG Fortran Library Manual

Furthermore,
[Ax —cll, = HZTAX - ZTCHz
|ROx — Zel|,

We partition this expression as:
n—p Rll R12 (xl> _ (Cl>
P+m—n 0 Ry, X2 &)’
where (cl) =Z'c.
()

To solve the LSE problem, we set
Ryx; +Ripxy —c1 =0
which gives x; as the solution of the upper triangular system
Ryjxp = ¢; — Rppxy.

Finally, the desired solution is given by

2.6.3 Generalized Singular Value Decomposition (GSVD)

The generalized (or quotient) singular value decomposition of an m by n matrix 4 and a p by n matrix
B is given by the pair of factorizations

A=UX[0,RI0" and B=V53,[0,R|0".
The matrices in these factorizations have the following properties:

— Uismbym, Vispbyp, Qis n by n, and all three matrices are orthogonal. If 4 and B are complex,

these matrices are unitary instead of orthogonal, and Q" should be replaced by O" in the pair of
factorizations.

— R is r by r, upper triangular and non-singular. [0, R] is 7 by n (in other words, the 0 is an » by n — r

, and satisfies r < n.

zero matrix). The integer r is the rank of (g

— XY, ism by r, X, is p by r, both are real, non-negative and diagonal, and ZITZI + EzTEz =1. Write
iy, = diag(oﬁ, cee af) and X1 %, = diag(ﬁ%, e ﬁf), where «; and (; lie in the interval from 0 to
1. The ratios «; /3, ...,a,/(, are called the generalized singular values of the pair 4, B. If 8, =0,
then the generalized singular value «;/(; is infinite.

2/, and X, have the following detailed structures, depending on whether m —r > 0 or m —r < 0. In the
first case, m — r > 0, then

k1 kol
k(I O
X = o C and X, = 5(8 ‘g)
m—k—1\0 0 P
Here [is the rank of B, k =r — [, C and S are diagonal matrices satisfying C> +S* = I, and S is non-
singular. We may also identify oy = =y =1, oy, =cy, fori=1,...,[, By =--- =5, =0, and
Biyi = Si, fori=1,...,1 Thus, the first k£ generalized singular values «;/f,. .., o /0, are infinite, and

the remaining / generalized singular values are finite.

F08.10 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

In the second case, when m — r < 0,

5 = k|1 0 0
m—k\0 C 0
and
k m—k k+1—m
m—=k [0 S 0
h=k+l-m|0 0 I
p—1\0 0 0
Again, is the rank of B, k = r — I, C and S are diagonal matrices satisfying C> + $*> = I, and S is non-
singular, and we may identify oy = =, =1, o, =¢y, fori=1,... m—k, o, 1 = =0, =0,
Bi=--=0,=0, Bypi=s4 for i=1,....m—k and B, ,=---=pF.,=1. Thus, the first k
generalized singular values o /f3,...,a;/0; are infinite, and the remaining / generalized singular values
are finite.

Here are some important special case of the generalized singular value decomposition. First, if B is square
and non-singular, then » = n and the generalized singular value decomposition of 4 and B is equivalent to

the singular value decomposition of 4B~', where the singular values of 4B~! are equal to the generalized
singular values of the pair 4, B:

AB™' = (USIRQV) (Y 5,R0T) ' = U(2, 571,
Second, if the columns of (ATBT)T are orthonormal, then » = n, R = I and the generalized singular value

decomposition of 4 and B is equivalent to the CS (Cosine—Sine) decomposition of (ATBT)T:

(5)=(5 7)(3)e"

Third, the generalized eigenvalues and eigenvectors of 4*4 — AB'B can be expressed in terms of the
generalized singular value decomposition: Let

)

T,T (0 0 T T (0 0
XAAX-(O E]TEI) and XBBX-(O 2;1*22>.

Then

Therefore, the columns of X are the eigenvectors of A°4 — AB'B, and ‘nontrivial’ eigenvalues are the
squares of the generalized singular values (see also Section 2.8). ‘Trivial’ eigenvalues are those

corresponding to the leading n — r columns of X, which span the common null space of 4*4 and B'B.
The ‘trivial eigenvalues’ are not well defined.

2.7 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, A\, and corresponding eigenvectors, z # 0,
such that

Az= Xz, A= AT, where A is real.
For the Hermitian eigenvalue problem we have
Az=Xz, A= AH, where 4 is complex.
For both problems the eigenvalues A are real.
When all eigenvalues and eigenvectors have been computed, we write

A=27zAZ" (or A=2zAZ% if complex),

[NP3657/21] F08.11

Introduction — F08 NAG Fortran Library Manual

where A is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem routines is to compute values of A and, optionally,
corresponding vectors z for a given matrix 4. This computation proceeds in the following stages.

1. The real symmetric or complex Hermitian matrix 4 is reduced to real tridiagonal form T. If A is real
symmetric this decomposition is 4 = QTQ" with Q orthogonal and 7' symmetric tridiagonal. If 4 is
complex Hermitian, the decomposition is 4 = QTQ" with O unitary and T, as before, real symmetric
tridiagonal.

2. Figenvalues and eigenvectors of the real symmetric tridiagonal matrix 7' are computed. If all

eigenvalues and eigenvectors are computed, this is equivalent to factorizing 7 as T = SAST, where S
is orthogonal and A is diagonal. The diagonal entries of A are the eigenvalues of 7', which are also
the eigenvalues of A4, and the columns of S are the eigenvectors of T'; the eigenvectors of 4 are the

columns of Z = QS, so that A = ZAZ* (ZAZ" when A4 is complex Hermitian).

This chapter supports four primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(1) the divide-and-conquer algorithm;

(i1) the QR algorithm;

(iii) bisection followed by inverse iteration;

(iv) the Relatively Robust Representation (RRR).

The divide-and-conquer algorithm is generally more efficient than the traditional QR algorithm for
computing all eigenvalues and eigenvectors, but the RRR algorithm tends to be fastest of all. For further
information and references see Anderson et al. (1999).

2.8 Generalized Symmetric-definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az = ABz, ABz =)z,
and BAz =)z, where 4 and B are real symmetric or complex Hermitian and B is positive-definite. Each of
these problems can be reduced to a standard symmetric eigenvalue problem, using a Cholesky factorization

of B as either B=LL" or B=U"U (LL" or U"U in the Hermitian case).
With B = LL", we have
Az=ABz= (L7'AL™")(L"z) = A(L"z).
Hence the eigenvalues of Az = ABz are those of Cy = Ay, where C is the symmetric matrix C = L™'4L™"
and y = L"z. In the complex case C is Hermitian with C = L™ '"AL™™ and y = L"z.

Table 1 summarizes how each of the three types of problem may be reduced to standard form Cy =)y,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must be
replaced by conjugate-transposes.

F08.12 [NP3657/21]

FO8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

Type of problem | Factorization of B Reduction Recovery of eigenvectors

l. | Az= ABz B=LL", C=L'4AL", | z=L""y,

B=U"U cC=U"au! | z=U"Y
2. | ABz = Xz B=LL", c=1L"4L, z=1L""y,

B=UU C=UAU" z=U"Yy
3. | BAz = Xz B=1LL", C=1L"4L, z =1y,

B=U"U c=vau" |z=U"y

Table 1

Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard problem
Cy =)y, this may then be solved using the routines described in the previous section. No special routines
are needed to recover the eigenvectors z of the generalized problem from the eigenvectors y of the standard
problem, because these computations are simple applications of Level 2 or Level 3 BLAS (see Chapter
F06).

2.9 Packed Storage for Symmetric Matrices

Routines which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle is
stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of
the array can be used to store other useful data. However, that is not always convenient, and if it is
important to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of
length n(n + 1)/2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.

Routines designed for packed storage are usually less efficient, especially on high-performance computers,
so there is a trade-off between storage and efficiency.

2.10 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of subdiagonals or
superdiagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme for band matrices is described in
Section 3.3.

If the problem is the generalized symmetric definite eigenvalue problem Az = A\Bz and the matrices 4 and
B are additionally banded, the matrix C as defined in Section 2.8 is, in general, full. We can reduce the
problem to a banded standard problem by modifying the definition of C thus:

C=XT4x, where X=U'0Q orL'Q,
where Q is an orthogonal matrix chosen to ensure that C has bandwidth no greater than that of A.

A further refinement is possible when 4 and B are banded, which halves the amount of work required to
form C. Instead of the standard Cholesky factorization of B as UTU or LLY, we use a split Cholesky

factorization B = STS, where
Ui)
S pu—
(M 21 Lo

with Uy, upper triangular and L,, lower triangular of order approximately n/2; S has the same bandwidth
as B.

[NP3657/21] F08.13

Introduction — F08 NAG Fortran Library Manual

2.11 Nonsymmetric Eigenvalue Problems

The non-symmetric eigenvalue problem is to find the eigenvalues,)\, and corresponding eigenvectors,
v #£ 0, such that

Av = dv.
More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u # 0 satisfying
utA = du® (uHA =l when u is complex)
is called a left eigenvector of A.
A real matrix 4 may have complex eigenvalues, occurring as complex conjugate pairs.
This problem can be solved via the Schur factorization of A, defined in the real case as
A=27T7",

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2 diagonal
blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of 4. In the complex
case, the Schur factorization is

A=27T7",
where Z is unitary and 7 is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 < k < n), the first £ columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k& eigenvalues on the diagonal of 7.
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of & eigenvalues
occupy the k leading positions on the diagonal of 7.

The two basic tasks of the non-symmetric eigenvalue routines are to compute, for a given matrix 4, all n
values of A and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the Schur
factorization.

These two basic tasks can be performed in the following stages.

1. A general matrix A4 is reduced to upper Hessenberg form H which is zero below the first subdiagonal.

The reduction may be written 4 = QHQ' with Q orthogonal if 4 is real, or 4 = QHQO" with Q
unitary if 4 is complex.

2. The upper Hessenberg matrix H is reduced to Schur form 7', giving the Schur factorization H = STS"
(for H real) or H = ST st (for H complex). The matrix S (the Schur vectors of H) may optionally be
computed as well. Alternatively S may be postmultiplied into the matrix O determined in stage 1, to
give the matrix Z = QS, the Schur vectors of 4. The eigenvalues are obtained from the diagonal
elements or diagonal blocks of T.

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration can
be performed on H to compute the eigenvectors of H, and then the eigenvectors can be multiplied by
the matrix Q in order to transform them to eigenvectors of 4. Alternatively the eigenvectors of 7' can
be computed, and optionally transformed to those of H or A if the matrix S or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix. This
is discussed further in Section 2.14.6 below.

2.12 Generalized Nonsymmetric Eigenvalue Problem

The generalized non-symmetric eigenvalue problem is to find the eigenvalues, A, and corresponding
eigenvectors, v # 0, such that

Av = \Bv.

More precisely, a vector v as just defined is called a right eigenvector of the matrix pair (4,B), and a
vector u # 0 satisfying

F08.14 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

u'A= "B (uHA = \u''B when u is complex)
is called a left eigenvector of the matrix pair (4, B).

If B is singular then the problem has one or more infinite eigenvalues A = oo, corresponding to Bv = 0.
Note that if 4 is non-singular, then the equivalent problem pAdv = Bv is perfectly well defined and an
infinite eigenvalue corresponds to ;1 = 0. To deal with both finite (including zero) and infinite eigenvalues,
the routines in this chapter do not compute A explicitly, but rather return a pair of numbers («, 3) such that

if 30
A=a/p

and if « #0 and =0 then A =o00. [is always returned as real and non-negative. Of course,
computationally an infinite eigenvalue may correspond to a small 3 rather than an exact zero.

For a given pair (4, B) the set of all the matrices of the form (4 — AB) is called a matrix pencil and A and
v are said to be an eigenvalue and eigenvector of the pencil (4 — AB). If 4 and B are both singular and
share a common null-space then

det(4 — AB) =0

so that the pencil (4 — AB) is singular for all A. In other words any A can be regarded as an eigenvalue.
In exact arithmetic a singular pencil will have o = = 0 for some (o, 3). Computationally if some pair
(o, B) is small then the pencil is singular, or nearly singular, and no reliance can be placed on any of the
computed eigenvalues. Singular pencils can also manifest themselves in other ways; see, in particular,
Sections 2.3.5.2 and 4.11.1.4 of Anderson et al. (1999) for further details.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of the pair
(4,B) defined in the real case as

A=0sz7", B=01Z",

where Q and Z are orthogonal, 7 is upper triangular with non-negative diagonal elements and S is upper
quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks, the 2 by 2 blocks corresponding to complex
conjugate pairs of eigenvalues. In the complex case, the generalized Schur factorization is

A=08z" B=o01Z",

where Q and Z are unitary and S and 7 are upper triangular, with 7 having real non-negative diagonal
elements. The columns of O and Z are called respectively the left and right generalized Schur vectors and
span pairs of deflating subspaces of A and B, which are a generalization of invariant subspaces.

It is possible to order the generalized Schur factorization so that any desired set of k eigenvalues
correspond to the k leading positions on the diagonals of the pair (S, T).

The two basic tasks of the generalized non-symmetric eigenvalue routines are to compute, for a given pair
(4, B), all n values of A and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and
the generalized Schur factorization.

These two basic tasks can be performed in the following stages.

1. The matrix pair (4,B) is reduced to generalized upper Hessenberg form (H,R), where H is upper
Hessenberg (zero below the first subdiagonal) and R is upper triangular. The reduction may be written

as 4 = QIHZIT,B = QlRZlT in the real case with O, and Z; orthogonal, and 4 = QIHZIl{,B = QIRZIl{
in the complex case with O, and Z; unitary.

2. The generalized upper Hessenberg form (H, R) is reduced to the generalized Schur form (S, 7') using

the generalized Schur factorization H = QZSZ;F, R=0,T ZZT in the real case with O, and Z,

orthogonal, and H = QZSZg,R =0,T 7 in the complex case. The generalized Schur vectors of
(4, B) are given by Q = 0,0,, Z = Z,Z,. The eigenvalues are obtained from the diagonal elements
(or blocks) of the pair (S, 7).

3. Given the eigenvalues, the eigenvectors of the pair (S,7) can be computed, and optionally
transformed to those of (H,R) or (4, B).

[NP3657/21] F08.15

Introduction — F08 NAG Fortran Library Manual

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix pair.
This is discussed further in Section 2.14.8 below.

2.13 The Sylvester Equation and the Generalized Sylvester Equation
The Sylvester equation is a matrix equation of the form
AX +XB = C,

where 4, B, and C are given matrices with 4 being m by m, B an n by n matrix and C, and the solution
matrix X, m by n matrices. The solution of a special case of this equation occurs in the computation of the
condition number for an invariant subspace, but a combination of routines in this chapter allows the
solution of the general Sylvester equation.

Routines are also provided for solving a special case of the generalized Sylvester equations
AR—LB=C, DR—-LE=F,

where (4,D), (B,E) and (C,F) are given matrix pairs, and R and L are the solution matrices.

2.14 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the routines in this chapter return
information, such as condition numbers, that allow these effects to be assessed. First we discuss some
notation used in the error bounds of later sections.

The bounds usually contain the factor p(n) (or p(m, n)), which grows as a function of the matrix dimension
n (or matrix dimensions m and »). It measures how errors can grow as a function of the matrix dimension,
and represents a potentially different function for each problem. In practice, it usually grows just linearly;
p(n) < 10n is often true, although generally only much weaker bounds can be actually proved. We
normally describe p(n) as a ‘modestly growing’ function of n. For detailed derivations of various p(n), see
Golub and Van Loan (1996) and Wilkinson (1965).

For linear equation (see Chapter FO7) and least-squares solvers, we consider bounds on the relative error
|lx — %||/||x|| in the computed solution X, where x is the true solution. For eigenvalue problems we
consider bounds on the error {)\,» — 5\,»| in the ith computed eigenvalue 5\,», where); is the true ith
eigenvalue. For singular value problems we similarly consider bounds |o; — ;.

Bounding the error in computed eigenvectors and singular vectors ¥; is more subtle because these vectors
are not unique: even though we restrict ||v;||, = 1 and ||v;||, = 1, we may still multiply them by arbitrary
constants of absolute value 1. So to avoid ambiguity we bound the angular difference between v; and the
true vector v;, so that

6(v;,¥;) = acute angle between v; and V; 5
= arccos\v?f)i|. (2)

Here arccos(f) is in the standard range: 0 < arccos(f) < w. When 6(v;,V;) is small, we can choose a
constant o with absolute value 1 so that ||av; — V||, = 0(v;, V;).

In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned by
collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A4 is the matrix. Again, we will use

angle to measure the difference between a computed space S and the true space S:

9(8 , S) = acute angle between S and S
= maxminf(s,§) or maxminf(s,S$) (3)
seS 3e8 se§ s€S
570 5240 §£0 70

H(S , S') may be computed as follows. Let S be a matrix whose columns are orthonormal and spanS.
Similarly let S be an orthonormal matrix with columns spanning S. Then

0(S,S) = arccos oy (S"S).

F08.16 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like ||x — x]| /||x||
and angular errors like 6(¥;,v;) are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and supply
little extra information in the interesting case of small errors. These bounds are indicated by using the
symbol <, or ‘approximately less than’, instead of the usual <. Thus, when these bounds are close to 1
or greater, they indicate that the computed answer may have no significant digits at all, but do not
otherwise bound the error.

A number of routines in this chapter return error estimates and/or condition number estimates directly. In
other cases Anderson et al. (1999) gives code fragments to illustrate the computation of these estimates,
and a number of the Chapter FO8 example programs, for the driver routines, implement these code
fragments.

2.14.1 Least-squares problems

The conventional error analysis of linear least-squares problems goes as follows. The problem is to find
the x minimizing ||4x — b|[,. Let X be the solution computed using one of the methods described above.

We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and has
full rank.

Then the computed solution X has a small normwise backward error. In other words X minimizes
|(4+ E)x — (b+f)]|l,, where
1£]l, IV|2>
ax (1202 W) e
(|A|z 121l

and p(n) is a modestly growing function of n and € is the machine precision. Let
Ky(A) = Opax (4)/Omin (4), p = ||[4x — b]|,, and sin(0) = p/||b||,. Then if p(n)e is small enough, the
error X — x is bounded by

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and Van Loan (1996) for error bounds in this case, as well
as for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterized as the solution of the

linear system of equations
I 4 ry (b
A" o)J\x) " \o)

By solving this linear system (see Chapter FO7) component-wise error bounds can also be obtained
Arioli et al. (1989).

2.14.2 The singular value decomposition

The usual error analysis of the SVD algorithm is as follows (see Golub and Van Loan (1996)).

The computed SVD, UX V7T, is nearly the exact SVD of A + E, i.e., A+ E = (U + 6U)£‘(f/ + 617) is the
true SVD, so that U +6U and 7 +6F are both orthogonal, where |E|,/||4]l, < p(m,n)e,
H(SUH < p(m,n)e, and H(SVH < p(m,n)e. Here p(m,n) is a modestly growing function of m and n and

€ is the machine precision. Each computed singular value &; differs from the true o; by an amount
satisfying the bound

|&i - Ui| Sp(mvn)eal'

Thus large singular values (those near ;) are computed to high relative accuracy and small ones may not
be.

The angular difference between the computed left singular vector #; and the true u; satisfies the
approximate bound

[NP3657/21] F08.17

Introduction — F08 NAG Fortran Library Manual

A
(i) < Pl
£ap;
where

gap; = Iggﬂgi - Uj|

is the absolute gap between o; and the nearest other singular value. Thus, if o; is close to other singular
values, its corresponding singular vector #; may be inaccurate. The same bound applies to the computed
right singular vector ¥; and the true vector v;, The gaps may be easily obtained from the computed singular
values.

Let S be the space spanned by a collection of computed left singular vectors {i;,i € I'}, where I is a
subset of the integers from 1 to n. Let § be the corresponding true space. Then
H(S, S) sp(m,n)€||A||2.
gapy
where
gap, :min{|ai —aj| foriel,j§él}

is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster of

close singular values which is far away from any other singular value may have a well determined space S
even if its individual singular vectors are ill-conditioned. The same bound applies to a set of right singular
vectors {V;,i € I'}.

In the special case of bidiagonal matrices, the singular values and singular vectors may be computed much
more accurately (see Demmel and Kahan (1990)). A bidiagonal matrix B has non-zero entries only on the
main diagonal and the diagonal immediately above it (or immediately below it). Reduction of a dense
matrix to bidiagonal form B can introduce additional errors, so the following bounds for the bidiagonal
case do not apply to the dense case.

Using the routines in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

|6; — o3 < p(m,n)eo;.
The computed left singular vector #; has an angular error at most about

O) < 2
relgap;
where

relgap, = min]a,- - a,-‘ /(o;+ o))
o . .

is the relative gap between o; and the nearest other singular value. The same bound applies to the right
singular vector ¥; and v;. Since the relative gap may be much larger than the absolute gap, this error bound
may be much smaller than the previous one. The relative gaps may be easily obtained from the computed
singular values.

2.14.3 The symmetric eigenproblem

The usual error analysis of the symmetric eigenproblem is as follows (see Parlett (1998)).

The computed eigendecomposition ZAZ" s nearly the exact eigendecomposition of A+ E, i.e.,
A+E=(Z+62)A(Z +62)T is the true eigendecomposition so that Z+ 6Z is orthogonal, where
IEI,/II4]l, < p(n)e and H(SZH2 < p(n)e and p(n) is a modestly growing function of » and e is the

machine precision. Each computed eigenvalue); differs from the true \; by an amount satisfying the
bound

F08.18 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

|5‘[- /\i| SP(”)€HA||2~
Thus large eigenvalues (those near max|\;| = ||4||,) are computed to high relative accuracy and small ones
1
may not be.

The angular difference between the computed unit eigenvector z; and the true z; satisfies the approximate
bound

9(2 Z') < p(”)EHAHZ
1=l ~y gapl

if p(n)e is small enough, where
gap; = min|A; — |
is the absolute gap between \; and the nearest other eigenvalue. Thus, if), is close to other eigenvalues,

its corresponding eigenvector z; may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let S be the invariant subspace spanned by a collection of eigenvectors {z;,i € I'}, where I is a subset of
the integers from 1 to n. Let S be the corresponding true subspace. Then

0(6.5) < Pl
gapy
where
gap; =min{|\, — X;| foriel,j¢lI}
is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of close

eigenvalues which is far away from any other eigenvalue may have a well determined invariant subspace §
even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix 7', routines in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson ef al. (1999) for further details.

2.14.4 The generalized symmetric-definite eigenproblem

The three types of problem to be considered are 4 — AB, AB — A\l and BA — A\l. In each case 4 and B are
real symmetric (or complex Hermitian) and B is positive-definite. We consider each case in turn, assuming
that routines in this chapter are used to transform the generalized problem to the standard symmetric
problem, followed by the solution of the symmetric problem. In all cases

= min|\ — \
gap; = min|A; — |
is the absolute gap between)\; and the nearest other eigenvalue.
1. A— AB. The computed eigenvalues ;\i can differ from the true eigenvalues); by an amount
3 -1
P‘i - >‘i| iP(”kHB H2||A||2
The angular difference between the computed eigenvector z; and the true eigenvector z; is

oz, =) < PelE” Hzgliuxrezw))”?

2. AB— M or BA— M\l. The computed eigenvalues \; can differ from the true eigenvalues \; by an
amount

|5‘i - >‘i| ip(”)GHBHzHAHT

The angular difference between the computed eigenvector z; and the true eigenvector z; is

[NP3657/21] F08.19

Introduction — F08 NAG Fortran Library Manual

0.2 < AeIBlallAl (r2(8)' ™
v £ap;

These error bounds are large when B is ill-conditioned with respect to inversion (k,(B) is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here. One
way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as for
example with a graded matrix.

1. A—AB. Let D= diag (bfll/ 2, by 2) be a diagonal matrix. Then replace B by DBD and 4 by
DAD in the above bounds.

2. AB— Ml or BA— M. Let D = diag (bl_ll/ 2, e 7b;,,1/ 2) be a diagonal matrix. Then replace B by DBD
and 4 by D7'AD™" in the above bounds.
Further details can be found in Anderson et al. (1999).

2.14.5 The non-symmetric eigenproblem

The non-symmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarize the bounds. Further details can be found in Anderson et al. (1999).

We let); be the ith computed eigenvalue and \; the ith true eigenvalue. Let ¥; be the corresponding
computed right eigenvector, and v; the true right eigenvector (so Av; = A\;v;). If I is a subset of the integers

from 1 to n, we let)\; denote the average of the selected eigenvalues: A\; = <Z /\i> / <Z 1>, and

icl iel
similarly for ;. We also let S, denote the subspace spanned by {v;,i € I'}; it is called a right invariant
subspace because if v is any vector in S; then Av is also in S;. S is the corresponding computed
subspace.

The algorithms for the non-symmetric eigenproblem are normwise backward stable: they compute the
exact eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices (4 + E)E, where
I|E|| < p(n)e||4]]. Some of the bounds are stated in terms of ||E||, and others in terms of ||E||»; one may
use p(n)e for either quantity.

Routines are provided so that, for each (S\i, ;) pair the two values s; and sep;, or for a selected subset I of
eigenvalues the values s; and sep; can be obtained, for which the error bounds in Table 2 are true for
sufficiently small ||E||, (which is why they are called asymptotic):

Simple eigenvalue |;\i _ /\i| < NE|,/s:

Eigenvalue cluster |5\, = MN| S EN, /s

Eigenvector 9({9”191,) < Ell 5/ sep;

Invariant subspace 0(S1,S1) < ||E|| g/ seps
Table 2

Asymptotic error bounds for the non-symmetric eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small ||E||. The
global error bounds of Table 3 are guaranteed to hold for all ||E||, < s x sep/4:

F08.20 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

Simple eigenvalue }S\i _)\l.| < n||E||,/s; Holds for all £

Eigenvalue cluster }5\1 — >\1| < 2||E|ly/s1 Requires ||E||» < s; X sepy/4
Eigenvector 9({91'7191') < arctan (2||E|| o/ (sep; — 4[|E| p/s)) Requires ||E||p < s; x sep;/4
Invariant subspace | (S;,S,) < arctan(2||E|| -/ (seps — 4||E||p/s1)) | Requires [|E|lp < sp X sepy/4

Table 3
Global error bounds for the non-symmetric eigenproblem

2.14.6 Balancing and condition for the non-symmetric eigenproblem

There are two preprocessing steps one may perform on a matrix 4 in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make 4 more nearly upper
triangular (closer to Schur form): 4’ = PAPY, where P is a permutation matrix. If 4" is permutable to
upper triangular form (or close to it), then no floating-point operations (or very few) are needed to reduce it
to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of 4 more
nearly equal in norm: 4” = DA'D™'. Scaling can make the matrix norm smaller with respect to the
eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter, 1I/11 of
Wilkinson and Reinsch (1971)). We refer to these two operations as balancing.

Permuting has no effect on the condition numbers or their interpretation as described previously. Scaling,
however, does change their interpretation and further details can be found in Anderson et al. (1999).

2.14.7 The generalized non-symmetric eigenvalue problem

The algorithms for the generalized non-symmetric eigenvalue problem are normwise backward stable: they
compute the exact eigenvalues (as the pairs («,(3)), eigenvectors and deflating subspaces of slightly
perturbed pairs (4 + E, B + F), where

I, F)llp < p(n)el[(4, B)| -

Asymptotic and global error bounds can be obtained, which are generalizations of those given in Tables 2
and 3. See Section 4.11 of Anderson et al. (1999) for details. Routines are provided to compute estimates
of reciprocal conditions numbers for eigenvalues and eigenspaces.

2.14.8 Balancing the generalized eigenvalue problem

As with the standard non-symmetric eigenvalue problem, there are two preprocessing steps one may
perform on a matrix pair (4, B) in order to make its eigenproblem easier; permutation and scaling, which
together are referred to as balancing, as indicated in the following two steps.

1. The balancing routine first attempts to permute 4 and B to block upper triangular form by a similarity

transformation:
Fin Fip Fi3
PAPT = F = Fy Fp |,
F3
G G Gy
PBP' =G = Gy Gy |,
G33

where P is a permutation matrix, F;;, F33, G;; and Gi; are upper triangular. Then the diagonal
elements of the matrix (F;;,Gy;) and (Gs3, Hs3) are generalized eigenvalues of (4,B). The rest of
the generalized eigenvalues are given by the matrix pair (Fy,G,,). Subsequent operations to
compute the eigenvalues of (4,B) need only be applied to the matrix (F,, G,,); this can save a

[NP3657/21] F08.21

Introduction — F08 NAG Fortran Library Manual

significant amount of work if (F,,, Gy,) is smaller than the original matrix pair (4, B). If no suitable
permutation exists (as is often the case), then there is no gain in efficiency or accuracy.

2. The balancing routine applies a diagonal similarity transformation to (F,G), to make the rows and
columns of (F,,, Gy,) as close as possible in the norm:

I Fll F12 F13 I
DFD™' = Dy Fy Fy Dy :
I Fi I
I Gll G12 Gl3 [
DGD ™' = Dy, Gy Gy D)
I Gs3 I

This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors. However, there are exceptional occasions when this transformation increases the norm
of the pencil; in this case accuracy could be lower with diagonal balancing.

See Anderson et al. (1999) for further details.

2.14.9 Other problems

Error bounds for other problems such as the generalized linear least-squares problem and generalized
singular value decomposition can be found in Anderson et al. (1999).

2.15 Block Partitioned Algorithms

A number of the routines in this chapter use what is termed a block partitioned algorithm. This means that
at each major step of the algorithm a block of rows or columns is updated, and much of the computation is
performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed by
calls to the Level 3 BLAS (see Chapter F06), which are the key to achieving high performance on many
modern computers. In the case of the QR algorithm for reducing an upper Hessenberg matrix to Schur
form, a multishift strategy is used in order to improve performance. See Golub and Van Loan (1996) or
Anderson et al. (1999) for more about block partitioned algorithms and the multishift strategy.

The performance of a block partitioned algorithm varies to some extent with the block size — that is, the
number of rows or columns per block. This is a machine-dependent parameter, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be aware
of what value is being used. Different block sizes may be used for different routines. Values in the range
16 to 64 are typical.

On more conventional machines there is often no advantage from using a block partitioned algorithm, and
then the routines use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the
Level 2 BLAS (see Chapter FO6 again).

The only situation in which you need some awareness of the block size is when it affects the amount of
workspace to be supplied to a particular routine. This is discussed in Section 3.4.3.

3 Recommendations on Choice and Use of Available Routines

Note: please refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Available Routines

The tables in the following sub-sections show the routines which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG routine name and the
LAPACK double precision name (see Section 3.2).

Black box (or driver) routines are provided for the solution of most problems. In a number of cases there
are simple drivers, which just return the solution to the problem, as well as expert drivers, which return
additional information, such as condition number estimates, and may offer additional facilities such as
balancing. The following sub-sections give tables for the driver routines.

F08.22 [NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK)

3.1.1 Driver routines

3.1.1.1 Linear least-squares problems (LLS)

Introduction — F08

Operation

real

complex

solve LLS using QR or LQ factorization

solve LLS using complete orthogonal factorization
solve LLS using SVD

solve LLS using divide-and-conquer SVD

FOSAAF (DGELS)
FOSBAF (DGELSY)
FOSKAF (DGELSS)
FOSKCF (DGELSD)

FOSANF (ZGELS)
FOSBNF (ZGELSY)
FOSKNF (ZGELSS)
FOSKQF (ZGELSD)

3.1.1.2 Generalized linear least-squares problems (LSE and GLM)

Operation

real

complex

solve LSE problem using GRQ
solve GLM problem using GQR

FO8ZAF (DGGLSE)
FOS8ZBF (DGGGLM)

FO8ZNF (ZGGLSE)
FO8ZPF (ZGGGLM)

3.1.1.3 Symmetric eigenvalue problems (SEP)

Function and storage scheme

real

complex

simple driver
divide-and-conquer driver
expert driver

RRR driver

FOSFAF (DSYEV)

FOSFCF (DSYEVD)
FOSFBF (DSYEVX)
FOSFDF (DSYEVR)

FOSFNF (ZHEEV)

FOSFQF (ZHEEVD)
FOSFPF (ZHEEVX)
FOSFRF (ZHEEVR)

packed storage

simple driver
divide-and-conquer driver
expert driver

FOSGAF (DSPEV)
FOSGCF (DSPEVD)
FOS8GBF (DSPEVX)

FOSGNF (ZHPEV)
FOSGQF (ZHPEVD)
FOSGPF (ZHPEVX)

band matrix
simple driver
divide-and-conquer driver
expert driver

FOSHAF (DSBEV)
FOSHCF (DSBEVD)
FOSHBF (DSBEVX)

FOSHNF (ZHBEV)
FOSHQF (ZHBEVD)
FOSHPF (ZHBEVX)

tridiagonal matrix
simple driver
divide-and-conquer driver
expert driver

RRP driver

FOSJAF (DSTEV)

FO8JCF (DSTEVD)
FO8JBF (DSTEVX)
FO8JDF (DSTEVR)

3.1.1.4 Nonsymmetric eigenvalue problem (NEP)

Function and storage scheme

real

complex

simple driver for Schur factorization
expert driver for Schur factorization
simple driver for eigenvalues/vectors
expert driver for eigenvalues/vectors

FOSPAF (DGEES)
FOSPBF (DGEESX)
FOSNAF (DGEEV)
FOSNBF (DGEEVX)

FOSPNF (ZGEES)
FOSPPF (ZGEESX)
FOSNNF (ZGEEV)
FOSNPF (ZGEEVX)

[NP3657/21]

F08.23

Introduction — F0S8

3.1.1.5 Singular value decomposition (SVD)

NAG Fortran Library Manual

Function and storage scheme

real

complex

simple driver
divide-and-conquer driver

FOSKBF (DGESVD)
FOSKDF (DGESDD)

FOSKPF (ZGESVD)
FOSKRF (ZGESDD)

3.1.1.6 Generalized symmetric definite eigenvalue

problems (GSEP)

Function and storage scheme

real

complex

simple driver
divide-and-conquer driver
expert driver

FOSSAF (DSYGV)
FO8SCF (DSYGVD)
FO8SBF (DSYGVX)

FO8SNF (ZHEGV)
FOSSQF (ZHEGVD)
FOSSPF (ZHEGVX)

packed storage

simple driver
divide-and-conquer driver
expert driver

FOSTAF (DSPGV)
FOSTCF (DSPGVD)
FOSTBF (DSPGVX)

FOSTNF (ZHPGV)
FOSTQF (ZHPGVD)
FOSTPF (ZHPGVX)

band matrix
simple driver
divide-and-conquer driver
expert driver

FOSUAF (DSBGV)
FOSUCF (DSBGVD)
FOSUBF (DSBGVX)

FOSUNF (ZHBGV)
FOSUQF (ZHBGVD)
FOSUPF (ZHBGVX)

3.1.1.7 Generalized non-symmetric eigenvalue problem (GNEP)

Function and storage scheme

real

complex

simple driver for Schur factorization
expert driver for Schur factorization
simple driver for eigenvalues/vectors
expert driver for eigenvalues/vectors

FOSXAF (DGGES)
FO8XBF (DGGESX)
FOSWAF (DGGEV)
FOSWBF (DGGEVX)

FOSXNF (ZGGES)
FO8XPF (ZGGESX)
FOSWNF (ZGGEV)

FOSWPF (ZGGEVX)

3.1.1.8 Generalized singular value decomposition (GSVD)

Function and storage scheme

real

complex

singular values/vectors

FOSVAF (DGGSVD)

FO8VNF (ZGGSVD)

3.1.2 Computational routines

It is possible to solve problems by calling two or more routines in sequence. Some common sequences of
routines are indicated in the tables in the following sub-sections; an asterisk (x) against a routine name
means that the sequence of calls is illustrated in the example program for that routine.

It should be noted that all the LAPACK computational routines from Release 3 are included in the NAG
Fortran Library and can be called by their LAPACK name*, although not all of these routines are currently
documented in Chapters FO7 and FO08.

3.1.2.1 Orthogonal factorizations

Routines are provided for QR factorization (with and without column pivoting), and for LQ, QL and RQ
factorizations (without pivoting only), of a general real or complex rectangular matrix. A routine is also
provided for the RQ factorization of a real or complex upper trapezoidal matrix. (LAPACK refers to this
as the RZ factorization.)

F08.24 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

The factorization routines do not form the matrix Q explicitly, but represent it as a product of elementary
reflectors (see Section 3.3.6). Additional routines are provided to generate all or part of QO explicitly if it is
required, or to apply Q in its factored form to another matrix (specifically to compute one of the matrix

products OC, O'C, CO or CO" with Q' replaced by O" if C and Q are complex).

Factorize Factorize with Generate Apply matrix Q
without pivoting Matrix Q
pivoting
OR factorization, real matrices FOSAEF FO8BFF FOBAFF FO8AGF
(DGEQRF) (DGEQP3) (DORGQR) (DORMQR)
LQ factorization, real matrices FOSAHF FO8AIJF FO8AKF
(DGELQF) (DORGLQ) (DORMLQ)
QL factorization, real matrices FO8CEF FO8CFF FO8CGF
(DGEQLF) (DORGQL) (DORMQL)
RQ factorization, real matrices FOSCHF FOSCJF FO8CKF
(DGERQF) (DORGRQ) (DORMRQ)
RQ factorization, real upper trapezoidal matrices FO8BHF FO8BKF
(DTZRZF) (DORMRZ)
OR factorization, complex matrices FOSASF FOSBTF FOSATF FOSAUF
(ZGEQRF) (ZGEQP3) (ZUNGQR) (ZUNMQR)
LQ factorization, complex matrices FO8AVF FOSAWF FOSAXF
(ZGELQF) (ZUNGLQ) (ZUNMLQ)
QL factorization, complex matrices FO8CSF FO8CTF FO8CUF
(ZGEQLF) (ZUNGQL) (ZUNMQL)
RQ factorization, complex matrices FOSCVF FOSCWF FO8CXF
(ZGERQF) (ZUNGRQ) (ZUNMRQ)
RQ factorization, complex upper trapezoidal matrices | FOSBVF FO8BXF
(ZTZRZF) (ZUNMRZ)

To solve linear least-squares problems, as described in Sections 2.2.1 or 2.2.3, routines based on the QR
factorization can be used:

real data, full-rank problem FO8AEF*, FO8AGF, FO6YJF
complex data, full-rank problem FO8ASF*, FO8AUF, FO6ZJF
real data, rank-deficient problem FO8BEF*, FOSAGF, FO6YJF
complex data, rank-deficient problem FO8BSF*, FOSAUF, FO6ZJF

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, routines based on the LQ factorization can be used:

real data, full-rank problem FO8AHF*, FO6YJF, FO8AKF
complex data, full-rank problem FO8AVF*, FO6ZJF, FOSAXF

3.1.2.2 Generalized orthogonal factorizations

Routines are provided for the generalized QR and RQ factorizations of real and complex matrix pairs.

Factorize

Generalized QR factorization, real matrices FOS8ZEF (DGGQRF)

Generalized RQ factorization, real matrices FO8ZFF (DGGRQF)

Generalized QR factorization, complex matrices | FO8ZSF (ZGGQRF)

Generalized RQ factorization, complex matrices | FO8ZTF (ZGGRQF)

3.1.2.3 Singular value problems

Routines are provided to reduce a general real or complex rectangular matrix 4 to real bidiagonal form B
by an orthogonal transformation 4 = QBPT (or by a unitary transformation 4 = QBPH if 4 is complex).

[NP3657/21] F08.25

Introduction — F08 NAG Fortran Library Manual

Different routines allow a full matrix 4 to be stored conventionally (see Section 3.3.1), or a band matrix to
use band storage (see Section 3.3.3).

The routines for reducing full matrices do not form the matrix Q or P explicitly; additional routines are
provided to generate all or part of them, or to apply them to another matrix, as with the routines for
orthogonal factorizations. Explicit generation of Q or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The routines for reducing band matrices have options to generate Q or P if required.

Further routines are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same routines can be used to compute the singular value decomposition of a real or
complex matrix that has been reduced to bidiagonal form.

Reduce to Generate Apply Reduce band SVD of SVD of

bidiagonal matrix Q matrix Q matrix to bidiagonal bidiagonal

form or P* or P bidiagonal form (OR form (divide

form algorithm) and conquer)

real matrices FOSKEF FO8KFF FOSKGF FOSLEF FOSMEF FOSMDF

(DGEBRD) (DORGBR) (DORMBR) (DGBBRD) (DBDSQR) (DBDSDC)
complex matrices | FOSKSF FO8KTF FOSKUF FO8LSF FOSMSF

(ZGEBRD) (ZUNGBR) (ZUNMBR) (ZGBBRD) (ZBDSQR)

Given the singular values, FOSFLF (DDISNA) is provided to compute the reciprocal condition numbers for
the left or right singular vectors of a real or complex matrix.

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

Rectangular matrix (standard storage)

real matrix, singular values and vectors FOSKEF, FO8KFF*, FOSMEF
complex matrix, singular values and vectors FO8KSF, FO8KTF*, FOSMSF

Rectangular matrix (banded)

real matrix, singular values and vectors FO8SLEF
complex matrix, singular values and vectors FO8LSF

To use the singular value decomposition to solve a linear least-squares problem, as described in
Section 2.4, the following routines are required:

real data FOSKEF, FO8KGF, FOBKFF,
FO8MEF, FO6YAF
complex data FO8KSF, FO8S8KUF, FOSKTF,

FO8MSF, FO6ZAF

3.1.2.4 Generalized singular value decomposition

Routines are provided to compute the generalized SVD of a real or complex matrix pair (4, B) in upper
trapezoidal form. Routines are also provided to reduce a general real or complex matrix pair to the
required upper trapezoidal form.

Reduce to trapezoidal form Generalized SVD of trapezoidal form
real matrices FOSVEF (DGGSVP) FOSYEF (DTGSJA)
complex matrices | FOSVSF (ZGGSVP) FO8YSF (ZTGSJA)

3.1.2.5 Symmetric eigenvalue problems

Routines are provided to reduce a real symmetric or complex Hermitian matrix A4 to real tridiagonal form T

by an orthogonal similarity transformation 4 = QT QT (or by a unitary transformation 4 = QT QH if 4 is
complex). Different routines allow a full matrix 4 to be stored conventionally (see Section 3.3.1) or in
packed storage (see Section 3.3.2); or a band matrix to use band storage (see Section 3.3.3).

F08.26 [NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

The routines for reducing full matrices do not form the matrix Q explicitly; additional routines are
provided to generate 0, or to apply it to another matrix, as with the routines for orthogonal factorizations.
Explicit generation of Q is required before using the QR algorithm to find all the eigenvectors of A;
application of O to another matrix is required after eigenvectors of 7 have been found by inverse iteration,
in order to transform them to eigenvectors of A.

The routines for reducing band matrices have an option to generate Q if required.

Reduce to Generate Apply matrix
tridiagonal matrix Q
form
real symmetric matrices FOSFEF FO8FFF FO8FGF
(DSYTRD) (DORGTR) (DORMTR)
real symmetric matrices (packed storage) FO8GEF FO8GFF FO8GGF
(DSPTRD) (DOPGTR) (DOPMTR)
real symmetric band matrices FOSHEF
(DSBTRD)
complex Hermitian matrices FO8FSF FOSFTF FOSFUF
(ZHETRD) (ZUNGTR) (ZUNMTR)
complex Hermitian matrices (packed storage) | FO8GSF FO8GTF FO8GUF
(ZHPTRD) (ZUPGTR) (ZUPMTR)
complex Hermitian band matrices FOSHSF
(ZHBTRD)

Given the eigenvalues, FOSFLF (DDISNA) is provided to compute the reciprocal condition numbers for
the eigenvectors of a real symmetric or complex Hermitian matrix.

A variety of routines are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix 7, some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same routines can be used to compute eigenvalues and eigenvectors of
a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real or Complex Hermitian

all eigenvalues (root-free QR algorithm) FO8JFF
all eigenvalues (root-free OR algorithm called by divide-and-conquer) FO8JCF or FO8JHF
all eigenvalues (RRR) FO8JLF
selected eigenvalues (bisection) FO08JJF

The original (non-reduced) matrix is Real

all eigenvalues and eigenvectors (QR algorithm) FO8JEF
all eigenvalues and eigenvectors (divide-and-conquer) FO8JCF or FO8JHF
all eigenvalues and eigenvectors (RRR) FO8JLF
all eigenvalues and eigenvectors (positive-definite case) FO8JGF
selected eigenvectors (inverse iteration) FO8JKF

The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) FO8JSF
all eigenvalues and eigenvectors (divide and conquer) FO8JVF
all eigenvalues and eigenvectors (RRR) FO8JYF
all eigenvalues and eigenvectors (positive-definite case) FO8JUF
selected eigenvectors (inverse iteration) FO8JXF

[NP3657/21] F08.27

Introduction — F08

NAG Fortran Library Manual

The following sequences of calls may be used to compute various combinations of eigenvalues and

eigenvectors, as described in Section 2.7.
Sequences for computing eigenvalues and eigenvectors
Real Symmetric matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer)

all eigenvalues and eigenvectors (using QR algorithm)

all eigenvalues and eigenvectors (RRR)

selected eigenvalues and eigenvectors (bisection and inverse iteration)

Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer)

all eigenvalues and eigenvectors (using QR algorithm)

all eigenvalues and eigenvectors (RRR)

selected eigenvalues and eigenvectors (bisection and inverse iteration)

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer)
all eigenvalues and eigenvectors (using QR algorithm)

Complex Hermitian matvix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer)

all eigenvalues and eigenvectors (using QR algorithm)

all eigenvalues and eigenvectors (RRR)

selected eigenvalues and eigenvectors (bisection and inverse iteration)

Complex Hermitian matvix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer)

all eigenvalues and eigenvectors (using QR algorithm)

all eigenvalues and eigenvectors (RRR)

selected eigenvalues and eigenvectors (bisection and inverse iteration)

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer)
all eigenvalues and eigenvectors (using QR algorithm)

3.1.2.6 Generalized symmetric-definite eigenvalue problems

FO8FCF

FOSFEF, FO8S8FFF*, FO8JEF
FOSFEF, FO8JLF, FO8S8FGF

FO8SFEF, FO8JJF, FO8JKF,
FO8FGFx*

FO8GCF

FO8GEF, FO8GFF*, FO8JEF
FO8GEF, FO8JLF, FO8GGF

FO8GEF, FO8JJF, FO8JKF,
FO8GGF*

FO8HCF
FO8HEF*, FO8JEF

FO8FQF

FO8FSF, FO8FTF*, FO8JSF
FO8FSF, FO8JYF, FO8S8FUF

FO8FSF, FO8JJF, FO8JXF,
FO8FUFx*

FO8GQF

FO8GSF, FO8GTF*, FO8JSF
FO8GSF, FO8JYF and FO8GUF
FO8GSF, FO8JJF, FO8JXF,
FO8GUFx*

FO8HQF
FO8HSF*, FO8JSF

Routines are provided for reducing each of the problems Ax = ABx, ABx = Ax or BAx = Ax to an
equivalent standard eigenvalue problem Cy = \y. Different routines allow the matrices to be stored either
conventionally or in packed storage. The positive-definite matrix B must first be factorized using a routine
from Chapter FO7. There is also a routine which reduces the problem Ax = ABx where 4 and B are
banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky factorization for

which a routine in Chapter FO8 is provided.

Reduce to standard
problem
storage)

Reduce to standard
problem (packed

Reduce to standard
problem (band
matrices)

real symmetric matrices FO8SEF (DSYGST)

FOSTEF (DSPGST)

FOSUEF (DSBGST)

complex Hermitian matrices | FOSSSF (ZHEGST)

FOSTSF (ZHPGST)

FOSUSF (ZHBGST)

F08.28

[NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

The equivalent standard problem can then be solved using the routines discussed in Section 3.1.2.5. For
example, to compute all the eigenvalues, the following routines must be called:

real symmetric-definite problem FO7FDF, FO8SEF*, FOSFEF,
FO8JFF

real symmetric-definite problem, packed storage FO7GDF, FO8TEF*, FO8GEF,
FO8JFF

real symmetric-definite banded problem FO8UFF*, FOSUEF*, FOSHEF,
FO8JFF

complex Hermitian-definite problem FO7FRF, FO8SSF*, FO8FSF,
FO8JFF

complex Hermitian-definite problem, packed storage FO7GRF, FO8TSF*, FO8GSF,
FO8JFF

complex Hermitian-definite banded problem FO8UTF*, FO8USF*, FO8SHSF,
FO8JFF

If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.8; routines from Chapter F06
may be used for this.

3.1.2.7 Nonsymmetric eigenvalue problems

Routines are provided to reduce a general real or complex matrix 4 to upper Hessenberg form H by an

orthogonal similarity transformation 4 = QHQ" (or by a unitary transformation 4 = QHO" if 4 is
complex).

These routines do not form the matrix Q explicitly; additional routines are provided to generate Q, or to
apply it to another matrix, as with the routines for orthogonal factorizations. Explicit generation of Q is
required before using the QR algorithm on H to compute the Schur vectors; application of QO to another
matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to transform
them to eigenvectors of A.

Routines are also provided to balance the matrix before reducing it to Hessenberg form, as described in
Section 2.14.6. Companion routines are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to Generate Apply matrix | Balance Back-
Hessenberg matrix Q 0 transform
form vectors after
balancing
real matrices FOSNEF FOSNFF FOSNGF FOSNHF FO8NIJF

(DGEHRD) | (DORGHR) | (DORMHR) | (DGEBAL) | (DGEBAK)

complex matrices | FOSNSF FOSNTF FOSNUF FOSNVF FOSNWF
(ZGEHRD) (ZUNGHR) (ZUNMHR) (ZGEBAL) (ZGEBAK)

Routines are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional routines estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.14.5.

[NP3657/21] F08.29

Introduction — F08 NAG Fortran Library Manual

Eigenvalues and | Eigenvectors Eigenvectors Sensitivities of
Schur from Hessenberg | from Schur eigenvalues and
factorization (QR | form (inverse factorization eigenvectors
algorithm) iteration)

real matrices FOSPEF FOSPKF FO8QKF FO8QLF
(DHSEQR) (DHSEIN) (DTREVC) (DTRSNA)

complex matrices | FOSPSF FOSPXF FO8QXF FO8QYF
(ZHSEQR) (ZHSEIN) (ZTREVC) (ZTRSNA)

Finally routines are provided for reordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The routines FOSQFF (DTREXC) and FO8QTF
(ZTREXC) simply swap two diagonal elements or blocks, and may need to be called repeatedly to achieve
a desired order. The routines FOBQGF (DTRSEN) and FOS8QUF (ZTRSEN) perform the whole reordering
process for the important special case where a specified cluster of eigenvalues is to appear at the top of the
Schur form; if the Schur vectors are reordered at the same time, they yield an orthonormal basis for the
invariant subspace corresponding to the specified cluster of eigenvalues. These routines can also compute
the sensitivities of the cluster of eigenvalues and the invariant subspace.

Reorder Schur factorization Reorder Schur factorization, find
basis for invariant subspace and
estimate sensitivities

real matrices FO8QFF (DTREXC) FO8QGF (DTRSEN)

complex matrices | FOSQTF (ZTREXC) FO8QUF (ZTRSEN)

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.11:

real matrix, all eigenvalues and Schur factorization FO8NEF, FO8SNFF*, FOSPEF

real matrix, all eigenvalues and selected eigenvectors FO8SNEF, FOS8PEF, FOS8PKF,
FO8NGF

real matrix, all eigenvalues and eigenvectors (with balancing) FO8NHF*, FOSNEF, FOSNFF,
FO8PEF, FO8PKF, FO8NJF

complex matrix, all eigenvalues and Schur factorization FO8NSF, FO8NTF*, FO8PSF

complex matrix, all eigenvalues and selected eigenvectors FO8NSF, FO8PSF, FO8PXF,
FO8NUF*

complex matrix, all eigenvalues and eigenvectors (with balancing) FO8NVF#*, FO8NSF, FO8NTF,

FO8PSF, FO8PXF, FO8SNWF

3.1.2.8 Generalized non-symmetric eigenvalue problems

Routines are provided to reduce a real or complex matrix pair (4;, R;), where A, is general and R is upper
triangular, to generalized upper Hessenberg form by orthogonal transformations A; = QIHZT,

R, = QIRZlT, (or by unitary transformations 4; = QIHZH, R= QlRlZIl{, in the complex case). These
routines can optionally return Q, and/or Z;. Note that to transform a general matrix pair (4, B) to the form

(4,,R;) a QR factorization of B (B = QRI) should first be performed and the matrix 4; obtained as
A; = Q"4 (see Section 3.1.2.1 above).

Routines are also provided to balance a general matrix pair before reducing it to generalized Hessenberg
form, as described in Section 2.14.8. Companion routines are provided to transform vectors of the
balanced pair to those of the original matrix pair.

F08.30 [NP3657/21]

F08 — Least-squares

and Eigenvalue Problems (LAPACK)

Introduction — F08

Reduce to generalized
Hessenberg form

Balance

Backtransform vectors
after balancing

real matrices

FOSWEF (DGGHRD)

FOSWHF (DGGBAL)

FOSWJF (DGGBAK)

complex matrices

FOSWSF (ZGGHRD)

FOSWVF (ZGGBAL)

FOSWWF (ZGGBAK)

Routines are provided to compute the eigenvalues (as the pairs («, 3)) and all or part of the generalized
Schur factorization of a generalized upper Hessenberg matrix pair. Eigenvectors may be computed from
the generalized Schur form by back-substitution.

Additional routines estimate the sensitivities of computed eigenvalues and eigenvectors.

Eigenvalues and
generalized Schur
factorization (QZ
algorithm)

Eigenvectors from
generalized Schur
factorization

Sensitivities of
eigenvalues and
eigenvectors

real matrices

FOSXEF (DHGEQZ)

FOSYKF (DTGEVC)

FOSYLF (DTGSNA)

complex matrices

FOSXSF (ZHGEQZ)

FO8YXF (ZTGEVC)

FOSYYF (ZTGSNA)

Finally, routines are provided for reordering the generalized Schur factorization so that eigenvalues appear
in any desired order on the diagonal of the generalized Schur form. FO8YFF (DTGEXC) and FO8YTF
(ZTGEXC) simply swap two diagonal elements or blocks, and may need to be called repeatedly to achieve
a desired order. FO8YGF (DTGSEN) and FO8YUF (ZTGSEN) perform the whole reordering process for
the important special case where a specified cluster of eigenvalues is to appear at the top of the generalized
Schur form; if the Schur vectors are reordered at the same time, they yield an orthonormal basis for the
deflating subspace corresponding to the specified cluster of eigenvalues. These routines can also compute
the sensitivities of the cluster of eigenvalues and the deflating subspace.

Reorder generalized Schur
factorization

Reorder generalized Schur
factorization, find basis for deflating
subspace and estimate sensitivites

real matrices

FO8YFF (DTGEXC)

FOSYGF (DTGSEN)

complex matrices

FO8YTF (ZTGEXC)

FOSYUF (ZTGSEN)

The following sequences of calls may be used to compute various combinations of

eigenvalues,

generalized Schur vectors and eigenvectors

real matrix pair, all eigenvalues (with balancing) FO8S8WHF, FOSAEF, FOSAGF,
FOBWEF, FO8XEFx*

FO8SAEF, FO8AGF, FOS8AFF,
FO8WEF, FO8SXEF

FO8WHF, FO8SAEF, FO8AGF,
FO6QHF, FO6QFF, FOSAFF,
FOSWEF, FO8XEF, FO8YKFx*,
FO8WJF

FO8WVF, FO8ASF, FO8SAUF,
FO8WSF, FO8XSFx*

complex matrix pair, all eigenvalues and generalized Schur factorization FO8ASF, FOSAUF, FOSATF,
FO8WSF, FO8XSF

FO8WVF, FO8ASF, FO8AUF,
FO6THF, FO6TFF, FOSATF,
FO8WSF, FO8XSF, FO8YXFx*,
FOSWWF

real matrix pair, all eigenvalues and generalized Schur factorization

real matrix pair, all eigenvalues and eigenvectors (with balancing)

complex matrix pair, all eigenvalues (with balancing)

complex matrix pair, all eigenvalues and eigenvectors (with balancing)

[NP3657/21] F08.31

Introduction — F08 NAG Fortran Library Manual

3.1.2.9 The Sylvester equation and the generalized Sylvester equation

Routines are provided to solve the real or complex Sylvester equation AX + XB = C, where 4 and B are
upper quasi-triangular if real, or upper triangular if complex. To solve the general form of the Sylvester
equation in which 4 and B are general square matrices, 4 and B must be reduced to upper (quasi-)
triangular form by the Schur factorization, using routines described in Section 3.1.2.7. For more details,
see the documents for the routines listed below.

Solve the Sylvester equation

real matrices FO8QHF (DTRSYL)

complex matrices | FOBQVF (ZTRSYL)

Routines are also provided to solve the real or complex generalized Sylvester equations
AR—LB=C, DR-LE=F,
where the pairs (4,D) and (B,E) are in generalized Schur form. To solve the general form of the

generalized Sylvester equation in which (4, D) and (B, E) are general matrix pairs, (4, D) and (B, E) must
first be reduced to generalized Schur form.

Solve the generalized Sylvester equation

real matrices FO8YHF (DTGSYL)

complex matrices | FOSYVF (ZTGSYL)

3.2 NAG Names and LAPACK Names

As well as the NAG routine name (beginning F08-), the tables in Section 3.1 show the LAPACK routine
names in double precision.

The routines may be called either by their NAG names or by their LAPACK names. When using the NAG
Library, the double precision form of the LAPACK name must be used (beginning with D- or Z-).

References to Chapter FO8 routines in the manual normally include the LAPACK double precision names,
for example FOBAEF (DGEQRF). The LAPACK routine names follow a simple scheme (which is similar
to that used for the BLAS in Chapter F06). Each name has the structure XYYZZZ, where the components
have the following meanings:

— the initial letter X indicates the data type (real or complex) and precision:

S — real, single precision (in Fortran 77, REAL)

D - real, double precision (in Fortran 77, DOUBLE PRECISION)

C - complex, single precision (in Fortran 77, COMPLEX)

Z - complex, double precision (in Fortran 77, COMPLEX*16 or DOUBLE COMPLEX)

— the 2nd and 3rd letters YY indicate the type of the matrix 4 or matrix pair (4, B) (and in some cases
the storage scheme):

BD - bidiagonal

DI - diagonal

GB - general band

GE - general

GG - general pair (B may be triangular)
HG - generalized upper Hessenberg

HS — upper Hessenberg

OP — (real) orthogonal (packed storage)
UP — (complex) unitary (packed storage)
OR - (real) orthogonal

UN - (complex) unitary

F08.32 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

PT - symmetric or Hermitian positive-definite tridiagonal
SB — (real) symmetric band

HB - (complex) Hermitian band

SP — symmetric (packed storage)

HP — Hermitian (packed storage)

ST - (real) symmetric tridiagonal

SY - symmetric

HE - Hermitian

TG - triangular pair (one may be quasi-triangular)

TR — triangular (or quasi-triangular)

— the last 3 letters ZZZ indicate the computation performed. For example, QRF is a QR factorization.

Thus the routine DGEQRF performs a QR factorization of a real general matrix; the corresponding routine
for a complex general matrix is ZGEQREF.

Some sections of the routine documents — Section 2 (Specification) and Section 9.1 (Example program) —
print the LAPACK name in bold italics, according to the NAG convention of using bold italics for
precision-dependent terms — for example, dgeqrf, which should be interpreted as DGEQRF (in double

precision).
3.3 Matrix Storage Schemes
In this chapter the following storage schemes are used for matrices:
— conventional storage in a two-dimensional array;
— packed storage for symmetric or Hermitian matrices;
— packed storage for orthogonal or unitary matrices;
— band storage for general, symmetric or Hermitian band matrices;
— storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional arrays.

These storage schemes are compatible with those used in Chapters FO6 and F07, but different schemes for
packed, band and tridiagonal storage are used in a few older routines in Chapters FO1, F02, FO3 and FO04.

In the examples below, * indicates an array element which need not be set and is not referenced by the
routines. The examples illustrate only the relevant leading rows and columns of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing array

arguments in Fortran 77.
3.3.1 Conventional storage

The default scheme for storing matrices is the obvious one: a matrix 4 is stored in a two-dimensional array

A, with matrix element a; stored in array element A(i,j).

[NP3657/21] F08.33

Introduction — F08 NAG Fortran Library Manual

If a matrix is triangular (upper or lower, as specified by the argument UPLO when present), only the
elements of the relevant triangle are stored; the remaining elements of the array need not be set. Such
elements are indicated by * in the examples below. For example, when n = 4:

UPLO Triangular matrix 4 Storage in array A
1 1
UPLO ='U ay;, ap api apa ap; app ap ap
%k
ayy dp3 Ay Ay dpz dp4
*k k
aszz dzg azz Ay
k %k %k
Ayq Aay
UPLO ="'L' aj a, *
dr; dpy dy; dx
k
az; dzy asz az; 4z dzz
A Qg Q43 Q4 g1 Qgp Q43 Qag

Similarly, if the matrix is upper Hessenberg, or if the matrix is quasi-upper triangular, elements below the
first subdiagonal need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle of the
matrix (as specified by UPLO) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set. For example, when n = 4:

UPLO Hermitian matrix 4 Storage in array A
UPLO ='U' ay ap a;3 ag ay; ap a3 ay
dpp axn dy ay *oay axp ay
a3 Gy a3 Az O an ay
Ay Gyq 34 Ay * gy
UPLO ='L' ap dy az g ap *
Ay axy ayp 4y ay axp ¥
az; Ay az ag as; azp as
g1 QAgy Q43 Qg4 41 dgp d43 Q44

3.3.2 Packed storage

Symmetric and Hermitian matrices may be stored more compactly, if the relevant triangle (again as
specified by UPLO) is packed by columns in a one-dimensional array. In Chapters FO7 and FO08, arrays
that hold matrices in packed storage, have argument names ending in ‘P’. So:

if UPLO ='U', gy is stored in AP(i+j(j —1)/2) for i <j;

if UPLO ='L!, g;; is stored in AP(i+ (2n —j)(j —1)/2) for j <.

For example:

UPLO Triangle of matrix 4 Packed storage in array AP
' 1
UPLO ="'U ay app api apg ay) A120s) 413023033 414024034044
—— . —
dy dpz dpg
azy dszg
(27)
b gl
UPLO ='L ai a11d2143104) A2203204 A33043 Q44
N —— —— e N~
a dp
aszp dszy dsz
Aq) dgy A43 Ay

F08.34 [NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

Note that for symmetric matrices, packing the upper triangle by columns is equivalent to packing the lower
triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle by
rows. For Hermitian matrices, packing the upper triangle by columns is equivalent to packing the
conjugate of the lower triangle by rows; packing the lower triangle by columns is equivalent to packing the
conjugate of the upper triangle by rows.

3.3.3 Band storage

A general m by n band matrix with k; subdiagonals and £, superdiagonals may be stored compactly in a
two-dimensional array with k; + k&, + 1 rows and »n columns. Columns of the matrix are stored in
corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. This
storage scheme should be used in practice only if k&, k, < n, although routines in Chapters FO7 and FOS8
work correctly for all values of k; and k,. In Chapters FO7 and F08, arrays that hold matrices in band
storage have argument names ending in ‘B’. So:

a; is stored in AB(k, + 1 +4i—j,j) for max(1,j —k,) <i < min(m,j+ k;).

For example, when m =6, n =5, k; =2 and k, = 1:

general band matrix 4 Band storage in array AB
ap 4ap * Ay 43 Azs Gys
ay; dy 4y ayp dpy dz3 Q44 dss
azy dsy a3z A3 dy; d3p d43 Q54 des
Ay Q43 Q44 dgs a1 agp asy des *
as3 ds4 dss
des des

A symmetric or Hermitian band matrix with & subdiagonals and superdiagonals may be stored more
compactly in a two-dimensional array with k£ 4+ 1 rows and »n columns. Only the upper or lower triangle
(as specified by UPLO) need to be stored. So:

if UPLO ='U', g is stored in AB(k + 1+ i —j,j) for max(1,j — k) <i <
if UPLO =L, a;; is stored in AB(1 +i—j,j) for j <i < min(n,j + k).

For example, when » = 5 and k = 2:

UPLO Hermitian band matrix 4 Band storage in array AB
_an % *
UPLO ="U ay ap apss aiz dy dss
= %
app dyy dx 4y djp dyz dzyg dys
iz Gz a3z Azg Az ay Ay Azz Q44 Ass

Goy Q34 Qaq Qgs
aszs Q45 d4ss

1 1 — —
UPLO ='L app dy a4z ayp 4y dzz das dss
Ve Ve *
apy dpy A4zp Ag dy; 43y Qg3 dsy
~ e * *
azp Azy dzz 43 ds3 az; dgp d4s3

gy Q43 Qg4 dsy4
sz ds4 d4ss

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n — 1 containing the off-diagonal elements. (Older
routines in Chapter F02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

[NP3657/21] F08.35

Introduction — F08 NAG Fortran Library Manual

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal matrices that are by definition purely real. In addition, some
complex triangular matrices computed by FO8 routines are defined by the algorithm to have real diagonal
elements — in QR factorization, for example.

If such matrices are supplied as input to FO8 routines, the imaginary parts of the diagonal elements are not
referenced, but are assumed to be zero. If such matrices are returned as output by FO8 routines, the
computed imaginary parts are explicitly set to zero.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted Q) is often represented in the NAG Library
as a product of elementary reflectors — also referred to as elementary Householder matrices (usually
denoted H;). For example,

Q= HyH,- - Hy.

You need not be aware of the details, because routines are provided to work with this representation, either

to generate all or part of O explicitly, or to multiply a given matrix by O or Q" (O" in the complex case)
without forming Q explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order » is a unitary matrix of the form
H=1—7mw" 4)

where 7 is a scalar, and v is an 7 element vector, with |7]*||v[|,> = 2 x Re(7); v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that A has no such special structure.

There is some redundancy in the representation (4), which can be removed in various ways. The
representation used in Chapter FO8 and in LAPACK (which differs from those used in some of the routines
in Chapters FO1, F02, FO4 and F06) sets v; = 1; hence v; need not be stored. In real arithmetic,
1 <7 <2, except that 7 = 0 implies H = 1.

In complex arithmetic, 7 may be complex, and satisfies 1 < Re(7) <2 and |7 — 1| < 1. Thus a complex
H is not Hermitian (as it is in other representations), but it is unitary, which is the important property. The
advantage of allowing 7 to be complex is that, given an arbitrary complex vector x, H can be computed so
that

H% = 3(1,0,...,0)"

with real 3. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Parameter Conventions
3.4.1 Option parameters

Most routines in this chapter have one or more option parameters, of type CHARACTER. The
descriptions in Section 5 of the routine documents refer only to upper case values (for example
UPLO ='"U" or UPLO ='L'); however in every case, the corresponding lower case characters may be
supplied (with the same meaning). Any other value is illegal.

A longer character string can be passed as the actual parameter, making the calling program more readable,
but only the first character is significant. (This is a feature of Fortran 77.) For example:

CALL SSYTRD (’Upper’,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M or N) to be passed as zero, in which case the
computation (or part of it) is skipped. Negative dimensions are regarded as an error.

F08.36 [NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

3.4.3 Length of work arrays

A number of routines implementing block algorithms require workspace sufficient to hold one block of
rows or columns of the matrix if they are to achieve optimum levels of performance — for example,
workspace of size n X nb, where nb is the optimal block size. In such cases, the actual declared length of
the work array must be passed as a separate argument LWORK, which immediately follows WORK in the
argument-list.

The routine will still perform correctly when less workspace is provided: it simply uses the largest block
size allowed by the amount of workspace supplied, as long as this is likely to give better performance than
the unblocked algorithm. On exit, WORK(1) contains the minimum value of LWORK which would allow
the routine to use the optimal block size; this value of LWORK can be used for subsequent runs.

If LWORK indicates that there is insufficient workspace to perform the unblocked algorithm, this is
regarded as an illegal value of LWORK, and is treated like any other illegal parameter value (see
Section 3.4.4).

If you are in doubt how much workspace to supply and are concerned to achieve optimal performance,
supply a generous amount (assume a block size of 64, say), and then examine the value of WORK(1) on
exit.

3.4.4 Error-handling and the diagnostic parameter INFO

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving the
parameter IFAIL. Instead they have a diagnostic parameter INFO. (Thus they preserve complete
compatibility with the LAPACK specification.)

Whereas IFAIL is an Input/Output parameter and must be set before calling a routine, INFO is purely an
Output parameter and need not be set before entry.

INFO indicates the success or failure of the computation, as follows:
INFO = 0: successful termination;
INFO > 0: failure in the course of computation, control returned to the calling program.

If the routine document specifies that the routine may terminate with INFO > 0, then it is essential to test
INFO on exit from the routine. (This corresponds to a soft failure in terms of the usual NAG error-
handling terminology.) No error message is output.

All routines check that input parameters such as N or LDA or option parameters of type CHARACTER
have permitted values. If an illegal value of the ith parameter is detected, INFO is set to —i, a message is
output, and execution of the program is terminated. (This corresponds to a hard failure in the usual NAG
terminology.) In some implementations, especially when linking to vendor versions of LAPACK,
execution of the program may continue, in which case, it is essential to test INFO on exit from the routine.

[NP3657/21] F08.37

Introduction — F08

4

The following decision trees are principally for the computation (general purpose) routines.

Decision Trees

NAG Fortran Library Manual

Section 3.1.1.1 for tables of the driver (black box) routines.

4.1

Tree 1: Real Symmetric Eigenvalue Problems

General Purpose Routines (eigenvalues and eigenvectors)

Are eigenvalues only
required?

yes

Are all the eigenvalues
required?

yes

Is A tridiagonal?

no

no

‘HO

See

—{ FOSJFF or FOSJCF
yes

Is A4 band matrix?

yes

B

Is one triangle of 4
stored as a linear array?

(FOSHEF FO8JFF) or
FOSHCF

yes

‘HO

(FOSFEF FO8JFF) or
FO8FCF

Is A tridiagonal?

e

FO8JJF

oo

Is A a band matrix?

FOSHEF FO8JJF

B

<
a
7

Is one triangle of 4
stored as a linear array?

yes

FOS8GEF FO8JJF

‘HO

FO8SFEF FO8JJF

Are all eigenvalues and

Is A tridiagonal?

FO8JEF, FO8JCF,

Is A tridiagonal?

ves

FO8JJF FO8JKF

‘IIO

Is one triangle of A4
stored as a linear array?

yes

‘1’10

FOSGEF FO8JJF FO8JKF
FO8GGF

FOSFEF FO8JJF FO8JKF
FOSFGF

F08.38

eigenvectors required? |yes yes| FO8JHF or FOSJLF
‘ no
Is A a band matrix? ves (FOSHI}iggl;I(?;EF) or
oo
Is one triangle of 4 (FOSGEF FO8GFF
stored as a linear array? |yes| FO8JEF) or FOSGCF
oo
(FOSFEF FO8FFF
FO8JEF) or FOSFCF
no

(FOSGEF FOSJFF) or
FO8GCF

[NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK)

Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

Are eigenvalues only
required?

yes

Are all the eigenvalues
required?

yes

Are A and B band
matrices?

Introduction — F08

no

no

Are A and B band

B

Are A and B stored with
one triangle as a linear
array?

yes

FOSUFF FOSUEF
FOSHEF FO8JFF

[so

FO7FDF FO8SEF FOSFEF
FO8JFF

FOSUFF FOSUEF

matrices? yes FOSHEF FO8JJF
‘no

Are f. andl B Stor‘f.d with FO7GDF FOSTEF

one rlang € as a liear yes FOSGEF FOSJJF

array?

‘IIO

FO7FDF FO8SEF FOSGEF
FO8JJF

Are all eigenvalues and
eigenvectors required?

yes

Are A and B stored with
one triangle as a linear
array?

no

Are A and B band
matrices?

no

FO7FDF FO8SEF FOSFEF
FOSFFF FO8JEF FO6YJF

‘IIO

Are 4 and B stored with
one triangle as a linear
array?

yes

FOSUFF FOSUEF
FOSHEF FO8JKF FO6YJF

yes

FO7GDF FO8TEF
FO8GEF FO8JJF FO8JKF
FO8GGF FO6PLF

[ro

FO7FDF FO8SEF FOSFEF
FO8JJF FO8JKF FOS8FGF
FO6YJF

yes

FO7GDF FO8TEF
FO8GEF FO8GFF FO8JEF
FO6PLF

yes

FO7GDF FO8TEF
FOSGEF FO8JFF

Note: the routines for band matrices only handle the problem Ax = ABx; the other routines handle all three
types of problems (4x = ABx, ABx = Ax or BAx = A\x) except that, if the problem is BAx = Ax and
eigenvectors are required, FOOPHF must be used instead of FO6PLF and FO6YFF instead of FO6YJF.

[NP3657/21]

F08.39

Introduction — F08

Tree 3: Real Nonsymmetric Eigenvalue Problems

Are eigenvalues required?

yes

no

no
FOSNHF FOSNEF FOSPEF |

Is the Schur factorization of 4
required?

yes

no

no
FOSNEF FOSNFF FOSPEF F08NJF‘

Are all eigenvectors required?

yes

no

Is A an upper Hessenberg matrix?

no

FOSNHF FOSNEF FOSPEF
FOSPKF FOSNGF FO8NJF

no

FOSNHF FOSNEF FOSNFF
FO8PEF FO8QKF FOSNJF

—{ FOSPEF FOSPKF
yes

Tree 4: Real Generalized Nonsymmetric Eigenvalue Problems

Are eigenvalues only required?

yes

Hessenberg form?

no

no

FOSWHF FOS8AEF FO8AGF
FOSWEF FO8XEF

Is the generalized Schur
factorization of 4 and B required?

w2

ye

Hessenberg form?

no

no

FOSAEF FO8AGF FO06QHF
FO6QFF FOSAFF FOSWEF

FO8XEF FO8YKF

Are A and B in generalized upper
Hessenberg form?

e

FO8XEF FO8YKF

no

FOSWHF FOSAEF FOS8AGF

FO6QHF FO6QFF FOSAFF

FOSWEF FOSXEF FO8YKF
FOSWIJF

F08.40

NAG Fortran Library Manual

Is A an upper Hessenberg matrix? ﬁ(

FOSPEF

Is A an upper Hessenberg matrix? E{

FO8PEF

Is A an upper Hessenberg matrix? ﬁ(

FOSPEF FO8QKF

Are 4 and B in generalized upper
yes

FO8XEF

Are 4 and B in generalized upper
yes

FO8XEF

[NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK)

Tree 5: Complex Hermitian Eigenvalue Problems

Are eigenvalues only
required?

Are all the eigenvalues

yes | required?

ix?
ves Is A4 a band matrix?

Introduction — F08

no

no

Is A4 a band matrix?

oo

Is one triangle of A
stored as a linear array?

‘IIO

FO8FSF FO8JJF

Are all eigenvalues and
eigenvectors required?

Is A a band matrix?

B

(FOSHSF FO8JFF) or
FOSHQF

Is one triangle of 4

stored as a linear array?

[ro

(FOSGSF FOSJFF) or
FOSGQF

(FOSFSF FOSJFF) or
FOSFQF

—{ FOSHSF FO8JJF
yes

—{ FOSGSF FO8JJF
yes

no

oo

Is one triangle of A4
stored as a linear array?

(FOSHSF FO8JSF) or

yes FOSHQF

(FO8GSF FO8GTF

ye

[no

(FOSFSF FOSFTF
FO8JSF) or FOSFQF

Is one triangle of 4
stored as a linear array?

FO8GSF FO8JJF FO8JXF

no

FO8GUF

FO8FSF FO8JJF FO8JXF
FOSFUF

[NP3657/21]

w2

FO8JSF) or FO8GQF

F08.41

Introduction — F08

NAG Fortran Library Manual

Tree 6: Complex Generalized Hermitian-definite Eigenvalue Problems

Are eigenvalues only
required?

yes

Are all eigenvalues
required?

yes

Are A and B stored with
one triangle as a linear
array?

no

no

Are A and B stored with
one triangle as a linear
array?

no

FO7FRF FO8SSF
FO8FSF FO8JFF

no

FO7FRF FO8SSF
FO8GSF FO8JJF

Are all eigenvalues and
eigenvectors required?

w

ye

Are A4 and B stored with
one triangle as a linear
array?

yes

FO7GRF FOSTSF
FO8GSF FO8JJF

no

Are A and B stored with
one triangle as a linear
array?

no

FO7FRF FO8SSF
FO8FSF FOSFTF FO8JSF
FO06ZJF

no

FO7FRF FO8SSF
FOSFSF FO8JJF FO8JXF
FO8FUF F06ZJF

F08.42

yes

FO7GRF FOSTSF
FO8GSF FO8JJF FO8JXF
FO8GUF FO6SLF

yes

FO7GRF FO8TSF
FO8GSF FO8GTF
FO6PSF

ye

w«

FO7GRF FOSTSF
FO8GSF FOS8JFF

[NP3657/21]

F0O8 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

Tree 7: Complex non-Hermitian Eigenvalue Problems

Are eigenvalues only required? ves Is A an upper Hessenberg matrix? ﬁ(FO8PSF
no
FOSNVF FOSNSF FOSPSF |
no
Is the Schur factorization of 4 .
0
required? ves Is A an upper Hessenberg matrix? E{ FO8PSF
no
FOSNSF FOSNTF FO8PSF
FOSNWF
no
Are all eigenvectors required? ves Is A an upper Hessenberg matrix? E{ FO8PSF FO8QXF
no
FOSNVF FO8NSF FOSNTF
FO8PSF FO8QXF FOSNWF
no
Is A an upper Hessenberg matrix? ﬁ(FO8PSF FO8PXF
no
FOSNVF FO8NSF FO8PSF
FO8PXF FOSNUF FOSNWF
Tree 8: Complex Generalized non-Hermitian Eigenvalue Problems
. . Are 4 and B in generalized upper
?
Are eigenvalues only required? ves | Hessenberg form? ﬁ(FO8XSF
no
FOSWVF FOS8ASF FOSAUF
FO8WSF FO8XSF
no
Is the generalized Schur Are 4 and B in generalized upper
factorization of 4 and B required? | yes |Hessenberg form? yes FO8XSF
no
FO8ASF FOSAUF FO6THF
FO6TFF FOSATF FOSWSF
FO8XSF FO8YXF

no

Are A and B in generalized upper o FOSXSF FOSYXF

Hessenberg form?

no

FOSWVF FO8ASF FOSAUF

FO6THF FO6TFF FOSATF

FOSWSF FO8XSF FO8YXF
FOSWWF

[NP3657/21] F08.43

Introduction — F08

4.2 General Purpose Routines (singular value decomposition)

Tree 9

NAG Fortran Library Manual

FOSLSF FOSMSF \

o 9
Is A a complex matrix? ves Is A banded? E‘

‘HO

Are singular values only required?

yes

FOSKSF FOSMSF \

| no
FO8KSF FOSKTF FOSMSF I

no

Is A bidiagonal? ﬁ{ FOSMEF]
[oo

Is 4 banded? Jes FOSLEF FOSMEF]
|no

Are singular values only required? ves FOSKEF FOSMEF |
|n0

| FOSKEF FOSKFF FOSMEF

5 Index

Backtransformation of eigenvectors from those of balanced forms:

1670 1010) 155 Q0 1113 5 b QO UUUUUUN
1670 1010] 15 Q 1413 5 D QRN
TEAL MALIIX ..eeeeeiiiiiieeeeeeeetieee e e e e et eeeeeeeeeeea e e eeeseeranaeeeeesnrnnnnaeeessnnnnnns
TEAL TNALIIX ©evvveiiiiiiieeeaaaeesaannnnannnnnneaeaeeas

Balancing:

complex general MAtrIXccceeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeereeereseeenennnes
compleX general MAIIXcccccceeereeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeereenennnnnnnes
real general MALIIXeeeeeeeeeeeeeeeiiiiieeeeeeeeeeeeeerreeeeeeeeeeeeennnnereeaaaens
real general MAIIXeeeeeeeeeeeeeeeiiiiiiieeeeeeeeeeeeireeeeeeeeeeeeeeennneeeeaaaens

Eigenvalue problems for condensed forms of matrices:
complex Hermitian matrix:
eigenvalues and eigenvectors:
band matrix:

.................. FOSNWF (ZGEBAK)
.................. FOSWWF (ZGGBAK)
.................. FO8NJF (DGEBAK)
.................. FO8WJF (DGGBAK)

.................. FO8NVF (ZGEBAL)
.................. FOSWVF (ZGGBAL)
.................. FOBNHF (DGEBAL)
.................. FOBWHF (DGGBAL)

all eigenvalues and eigenvectors by a divide-and-conquer algorithm,

USING PACKEA STOTAZE ...evvvrieeeriieeeeeiiiiiiteeeeeeeeeeeeeeeeeeeeeeee s e e eeneneeeeeas FO8SHQF (ZHBEVD)
all eigenvalues and eigenvectors by root-free QR algorithm FO8HNF (ZHBEV)
all eigenvalues and eigenvectors by root-free QR algorithm or selected

eigenvalues and eigenvectors by bisection and inverse iteration FO8HPF (ZHBEVX)

general matrix:

all eigenvalues and eigenvectors by a divide-and-conquer algorithm FOSFQF (ZHEEVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm,

USING PACKEA SLOTAZE ...uueeeeeeeeeeeeieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeereeeaeeeeeeennnnnnnannnnns FO8GQF (ZHPEVD)
all eigenvalues and eigenvectors by root-free OR algorithm FO8FNF (ZHEEV)
all eigenvalues and eigenvectors by root-free QR algorithm or selected

eigenvalues and eigenvectors by bisection and inverse iteration FO8FPF (ZHEEVX)
all eigenvalues and eigenvectors by root-free QR algorithm or selected

eigenvalues and eigenvectors by bisection and inverse iteration, using

PACKEA STOTAZE ..evvveneiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeerreeaeeeeeeennnannnannnnns FO8GPF (ZHPEVX)
all eigenvalues and eigenvectors by root-free QR algorithm, using packed

SEOTAZE ©vveeerrreeeirrreeirereeeseeeeesseeeaseeeaseeeeasssseasssseasssseasssseesssessesessesesssesasns FO8GNF (ZHPEV)

[NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

all eigenvalues and eigenvectors using Relatively Robust Representations
or selected eigenvalues and eigenvectors by bisection and inverse
TEETALION .ottt FOSFRF (ZHEEVR)
eigenvalues only:
band matrix:
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
AIZOTIERIM Lo.eviiiiie ettt e e e et e e e aee e evreeerenaeas FOSHNF (ZHBEV)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or OR
algorithm, or selected eigenvalues by bisectioneeeevveveeenennnnnnnnnn. FO8HPF (ZHBEVX)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
algorithm, using packed StOrageceeieeeeeeeiiiiiiiieeeeeeeeeeeceieeeeeeeeeeenns FO8HQF (ZHBEVD)
general matrix:
all eigenvalues by the Pal-Walker—Kahan variant of the QL or OR

AIGOTIEM L.viiiiiieeie ettt ettt e e eeeeeesaaeesneenneens FO8FNF (ZHEEV)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
Y Fo00) L1 4 ' AU FOSFQF (ZHEEVD)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
algorithm, or selected eigenvalues by biSeCtionceeeeeeecueriieeeeennnn. FO8FPF (ZHEEVX)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisectioneeevvveveeennnnnnnnnnn. FO8FRF (ZHEEVR)

all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisection, using packed storage FOBGPF (ZHPEVX)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR

algorithm, using packed StOTaZecceiieeeeeeiiiiiiiiieeeieeeeeecceeeeeeeee e FO8GNF (ZHPEV)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
algorithm, using packed StOrageooeeeeeiieiiiiiiiiiiiiiieeeeeee FO8GQF (ZHPEVD)
complex upper Hessenberg matrix, reduced from complex general matrix:
eigenvalues and Schur factorizationccccccceeeeieeeeeeeieiiiieeeee e e e e FO8PSF (ZHSEQR)
selected right and/or left eigenvectors by inverse iterationcc.cecceeeeeeeeenn. FO8PXF (ZHSEIN)

real bidiagonal matrix:
singular value decomposition:

after reduction from complex general MatrixXcoeeeevverveeeeeneeenennnnnennnnnnn. FO8MSF (ZBDSQR)
after reduction from real general MAtriXcccceeereeeeeeereeeeiiiiiiireeeeeeeeeeeenns FO8SMEF (DBDSQR)
after reduction from real general matrix, using divide-and-conquer FO8MDF (DBDSDC)

real symmetric matrix:
eigenvalues and eigenvectors:
band matrix:
all eigenvalues and eigenvectors by a divide-and-conquer algorithm FO8HCF (DSBEVD)

all eigenvalues and eigenvectors by root-free QR algorithm FO8HAF (DSBEV)
all eigenvalues and eigenvectors by root-free QR algorithm or selected
eigenvalues and eigenvectors by bisection and inverse iteration FO8HBF (DSBEVX)

general matrix:
all eigenvalues and eigenvectors by a divide-and-conquer algorithm FO8FCF (DSYEVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm,

USING PACKEA STOTAZE ...vvvriieeeriieeeeiiiiiiiitee e et e e ee e eeeeeeeeeee e e e e e e eeneeeeeeeas FO8GCF (DSPEVD)
all eigenvalues and eigenvectors by root-free QR algorithm FO8FAF (DSYEV)
all eigenvalues and eigenvectors by root-free QR algorithm or selected

eigenvalues and eigenvectors by bisection and inverse iteration FO8FBF (DSYEVX)

all eigenvalues and eigenvectors by root-free QR algorithm or selected
eigenvalues and eigenvectors by bisection and inverse iteration, using

PACKEA STOTAZE .oeeeeeeiiiiiiieeeeee ettt e e e e e e et e e e e e e e e e e neeeaeeas FO8GBF (DSPEVX)
all eigenvalues and eigenvectors by root-free OR algorithm, using packed
SEOTAZE 1eeeeeeeeuuererrrreeeeeeeeeeeeeaeerreeeeeeeeaeaaaaannsseessaaeesesssasansssseseaseeseeanaannnnes FO8GAF (DSPEV)

all eigenvalues and eigenvectors using Relatively Robust Representations
or selected eigenvalues and eigenvectors by bisection and inverse
TEEIAtION ...eviiiiiiiicc s FO8FDF (DSYEVR)

[NP3657/21] F08.45

Introduction — F08 NAG Fortran Library Manual

eigenvalues only:
band matrix:
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
Y F003 114133 RO FOSHAF (DSBEV)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
AlZOTINIM e FO8HCF (DSBEVD)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
algorithm, or selected eigenvalues by biSeCtioncceeeeecceviiieeeeennnn. FO8HBF (DSBEVX)
general matrix:
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR

AlZOTINIM e FO8FAF (DSYEV)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
AIGOTITM L.eiiiiiiieie ettt ettt et et te e e eeesteeeveeaeeenneens FO8FCF (DSYEVD)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
algorithm, or selected eigenvalues by bisectioneeevvveveeenennnnnnnnn. FO8FBF (DSYEVX)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
algorithm, or selected eigenvalues by biSectioncceeeeeeeeiirieeeennnn. FO8FDF (DSYEVR)

all eigenvalues by the Pal-Walker—Kahan variant of the QL or OR
algorithm, or selected eigenvalues by bisection, using packed storage FOBGBF (DSPEVX)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR

algorithm, using packed StOTageoeeeeeriieiiiiiiiiieeiiiieeeieaae FO8GAF (DSPEV)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
algorithm, using packed StOragecceieeeeeeeiiiiiiiieeeeeeeeeeceereeeeeeee e FO8GCF (DSPEVD)

real symmetric tridiagonal matrix:
eigenvalues and eigenvectors:
after reduction from complex Hermitian matrix:

all eigenvalues and €IZENVECIOTScceeeeeiieeeeeiiiiiiiieeeeeeeeeeeeieeeereeeeeeeenns FO8JSF (ZSTEQR)
all eigenvalues and eigenvectors, positive-definite matrixcccee..... FO8JUF (ZPTEQR)
all eigenvalues and eigenvectors, using divide-and-conquer FO8JVF (ZSTEDC)
all eigenvalues and eigenvectors, using Relatively Robust Representa-
1370) 4 TSR FO8JYF (ZSTEGR)
selected eigenvectors by inverse iterationc...eeeeeeevveeeeeeeeeereeneeennnnee FO8JXF (ZSTEIN)
all eigenvalues and IZENVECIOTSccceeiieeeeeeiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeennees FO8JEF (DSTEQR)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm FO8JCF (DSTEVD)
all eigenvalues and eigenvectors by root-free QR algorithm FO8JAF (DSTEV)
all eigenvalues and eigenvectors by root-free QR algorithm or selected
eigenvalues and eigenvectors by bisection and inverse iteration FO8JBF (DSTEVX)
all eigenvalues and eigenvectors using Relatively Robust Representations or
selected eigenvalues and eigenvectors by bisection and inverse iteration FO8JDF (DSTEVR)
all eigenvalues and eigenvectors, by divide-and-conquerccccceeeeeeeennee. FO8JHF (DSTEDC)
all eigenvalues and eigenvectors, positive-definite matrixcccceeeeeennnnnne. FO8JGF (DPTEQR)
all eigenvalues and eigenvectors, using Relatively Robust Representations .. FOBJLF (DSTEGR)
selected eigenvectors by INVErse iterationcccccceeeeeeeeeeeeevevereeeeeeeeeeeeennnns FO8JKF (DSTEIN)
eigenvalues only:
all eigenvalues by root-free QR algorithmcccceeviiiieeiiiiiiiiiiieeeeeeeeee, FO8JFF (DSTERF)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
Y00 611170 4 RSOOSR FO8JAF (DSTEV)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR
AIZOTIEIIM Le.eviiiiiiiecie ettt et eeve e e e e e e e veeeeabeeeeareseeaseeas FO8JCF (DSTEVD)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm,
or selected eigenvalues by DiSECIONeeeeeeeiiiiiiiiiiiiiiieeeeeeeeee e FO8JBF (DSTEVX)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or OR algorithm,
or selected eigenvalues by DiSECIONceeeeeeiiiiiiiiiiiiiiiiieeeeeeee FO8JDF (DSTEVR)
selected eigenvalues bY DISECHONcceeeiiieeeeeiiiiiiiiieeeeeeeeeceieeee e e e e e e e e FO8JJF (DSTEBZ)
real upper Hessenberg matrix, reduced from real general matrix:
eigenvalues and Schur factorizationcccccccceeeeieeiireeeciiiieeeee e, FOSPEF (DHSEQR)
selected right and/or left eigenvectors by inverse iterationccccceeeeeennnne. FO8PKF (DHSEIN)

F08.46 [NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

Eigenvalue problems for nonsymmetric matrices:
complex matrix:

all eigenvalues and left/right €1ZENVECOTScevieieiiiiiieeiiiiiieieee e, FO8NNF (ZGEEV)
all eigenvalues and left/right eigenvectors, plus balancing transformation and

reciprocal condition NUMDETScceeeiiiiieiiiiiiiiiiiiiieeeeeeeeee e e e e e e e e e e e FO8NPF (ZGEEVX)
all eigenvalues, Schur form and Schur vectorsccceeeeeiiiiieieiiieeeeccieeeeen. FO8PNF (ZGEES)

all eigenvalues, Schur form, Schur vectors and reciprocal condition numbers .. FOSPPF (ZGEESX)
real matrix:

all eigenvalues and left/right eigenvectorsccccceevevveeeiieiieeeeeeeeeeennennnennnns FO8NAF (DGEEV)
all eigenvalues and left/right eigenvectors, plus balancing transformation and
reciprocal condition NMUMDETScccceieieeereiereeeiiiiiiieeeeeeeeeeeeeenarreeeeeeeeseeseennnns FO8NBF (DGEEVX)
all eigenvalues, real Schur form and Schur vectorscccccccceeeeeeeiieeecceneennnn. FO8PAF (DGEES)
all eigenvalues, real Schur form, Schur vectors and reciprocal condition
TIUINIDELS .eeeeeiiunieteernieeteeeeenteeeeaanreeeesanreeeeeanneaeesaenseeeeesamreeeessnnneneessameesessnnmrens FO8PBF (DGEESX)
Eigenvalues and generalized Schur factorization,
complex generalized upper Hessenberg formcooeeviiiiiiiiiiiiiieiieiene FO8XSF (ZHGEQZ)
real generalized upper Hessenberg formccccccviiiiiiiiiiiecciiiiiiiieeee e, FO8XEF (DHGEQZ)
General Gauss-Markov linear model:
solves a complex general Gauss-Markov linear model problemcccccuueeeeenn. FO8ZPF (ZGGGLM)
solves a real general Gauss-Markov linear model problemcccccvvvveennnnnnnnnnn. FO8ZBF (DGGGLM)

Generalized eigenvalue problems for condensed forms of matrices:
complex Hermitian-definite eigenproblems:
banded matrices:

all eigenvalues and eigenvectors by a divide-and-conquer algorithm FO8UQF (ZHBGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form FO8UNF (ZHBGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal form FO8SUPF (ZHBGVX)
general matrices:

all eigenvalues and eigenvectors by a divide-and-conquer algorithm FO8SQF (ZHEGVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed

StOTAZE TOTMAL ...eiiiiiiiiiiieeeeiee ettt e e e e e e e e eeeas FOSTQF (ZHPGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form FO8SNF (ZHEGV)
all eigenvalues and eigenvectors by reduction to tridiagonal form, packed

SEOTAZE TOIMAL ...eiieiiieeiiieceiieceieeeetee e teeeecteeeeteeeeteeeebeeeeveeeeveeesarasessenans FO8TNF (ZHPGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal form FO8SPF (ZHEGVX)
selected eigenvalues and eigenvectors by reduction to tridiagonal form,

packed Storage fOrmatcoceeiiiiiiiiiiiieeeeeeee e FO8TPF (ZHPGVX)

real symmetric-definite eigenproblems:
banded matrices:

all eigenvalues and eigenvectors by a divide-and-conquer algorithm FO8UCF (DSBGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form FO8UAF (DSBGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal form FO8UBF (DSBGVX)
general matrices:

all eigenvalues and eigenvectors by a divide-and-conquer algorithm FO8SCF (DSYGVD)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed

0 Yol o) 1 1 Y AU PP FO8TCF (DSPGVD)
all eigenvalues and eigenvectors by reduction to tridiagonal form FO8SAF (DSYGV)
all eigenvalues and eigenvectors by reduction to tridiagonal form, packed

StOTAZE TOTMNALevviiiiiiieiiieeceeeeee e e e e e et e e e e e e e e e e eeerereeeeeeeeeeeennnnns FO8STAF (DSPGV)
selected eigenvalues and eigenvectors by reduction to tridiagonal form FO8SBF (DSYGVX)
selected eigenvalues and eigenvectors by reduction to tridiagonal form,

packed Storage fOTMALcceeiiiieeeeiiiiiiieeeee et e e e e e e e e e FO8TBF (DSPGVX)

Generalized eigenvalue problems for nonsymmetric matrix pairs:
complex nonsymmetric matrix pairs:

all eigenvalues and left/right €iZeNVeCtorsccccceeieeeeeeeceiiiiiieeeeeeeeeeeeceeeeeen. FO8WNF (ZGGEV)
all eigenvalues and left/right eigenvectors, plus the balancing transformation and

reciprocal condition NMUMDETSccceeviiieeeerrereeeeiiiiiieeeeeeeeeeeeeeenrreeeeeeeeeeeaaennnns FO8WPF (ZGGEVX)
all eigenvalues, generalized Schur form and Schur vectorsccccceeeeeennnnne. FO8XNF (ZGGES)
all eigenvalues, generalized Schur form, Schur vectors and reciprocal condition

TIIUINDETS oo eieieeeiieecetee ettt e ceteeeeteeeeteeeeteeeeaaeeeeaseeeeaseseeaseseeseeeenseseenseeesnres FO8XPF (ZGGESX)

[NP3657/21] F08.47

Introduction — F08 NAG Fortran Library Manual

real nonsymmetric matrix pairs:

all eigenvalues and left/right €1ZENVECOTScevieeiiiiiieeeiiiiiiiieeeeeee e, FO8SWAF
all eigenvalues and left/right eigenvectors, plus the balancing transformation and
reciprocal condition NUMDETSccceeiiiiiiiiiiiiieieiiiiieeeeeeeeseeeeeeeeeeaaaaas FO8WBF
all eigenvalues, generalized real Schur form and left/right Schur vectors FOSXAF
all eigenvalues, generalized real Schur form and left/right Schur vectors, plus
reciprocal condition NMUMDETScccceviiieeeeriereeeeiiiiiieeeeeeeeeeeeeennrreeeeeeeeeesaasannns FO8XBF
Generalized QR factorization:
(610 1010] 15 Q1018 (U FO8ZSF
1AL MALTICES. .eeiieiiiiiiieiiiittee et ettt e e e e e e e e e e e et e e s e mnn e e s ennneeeeenns FO8ZEF
Generalized RQ factorization:
COMPIEX MATICES: .evvrrrreerrieeeeeeiieirttteeeeeeaaaaaaannneerreeeeaeeaaaasasnnssseaeaaaeeesasaenssnssnssesens FO8ZTF
TEAL MNALIICES. .eveeereiiietereeiiiteeeeritte et eetttee e e ettt e e e ettt eeeeareeeeesanbaaeeseanseeeeeennsraaeesanns FO8ZFF

Generalized singular value decomposition
after reduction from complex general matrix:

complex triangular or trapezoidal matrix Paircceeeeeeeeeeeeerieereeeeeneenenennnnn. FO8YSF
after reduction from real general matrix:

real triangular or trapezoidal MatriX PaIrcccceecceiiiiiieeeririeeeeeiieeeeee e e e e FO8YEF
COMPIEX MATX PAIT ©eeeeeerriereeeiiieeiiiteeeereeeaeeeeaeeeeteeeeeeeeasaesnnnnneeaeaaeeessssassnnnnnneeeeees FO8VNF
TEAl MALTIX PAIT .uvvueeieiiiiieeieeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeererresreessssssssssnnssnnssssssasssssssessseseees FO8VAF
reduction of a pair of general matrices to triangular or trapezoidal form:

COMPIEX MALTICES .vvvrrrrerereieeeeeeiirireereeeeeeeaeeaeeereeeeaeeeeeasassnnssresaaaeeseesssssnnssseseees FO8VSF

TEAL MALIICES ..veteiieiitieeieettee e ettt et ettt e e ettt e e e ettt e e e e bt e e e e eaabeeeeeeeameaeeeeeaneeas FO8VEF

Least squares problems with linear equality constraints
complex matrices:
minimum norm solution subject to linear equality constraints using a
generalized RO fACtOTIZAtIONceeiiiiiiieeeeeiiiiiiieeeeeeeeeeeeiieee e e e e e e e e e eeeeeeeeas FO8ZNF
real matrices:
minimum norm solution subject to linear equality constraints using a
generalized RO factOriZatiOnccceeiiiireeeiiiiiiiieeeeeeeeeeeeeeeeeee e e e e e e eeeeeeeeeas FO8ZAF
Least squares problems:
complex matrices:

apply orthogonal MALIIXcceeeceeiiiieeeeeeeeeeeeeietee e e e e e e e e eereeeeee e e e e e e eeeeeeeeens FO8BXF
minimum norm solution using a complete orthogonal factorization FO8BNF
minimum norm solution using the singular value decomposition FO8KNF
minimum norm solution using the singular value decomposition (divide-and-
[ofe) 10 |1 <) o) U FOBKQF
reduction of upper trapezoidal matrix to upper triangular form FO8BVF

real matrices:
apply orthogonal MAIIXceeeeeeeiiiieieeeeeeeeeeireee e e e e e e e e ee e e e e e e e e e eeeeeeeaeeas FO8BKF
minimum norm solution using a complete orthogonal factorization FO8BAF
minimum norm solution using the singular value decomposition FOSKAF
minimum norm solution using the singular value decomposition (divide-and-
COMQUET) 1eitiiittttttttenetanaaaa e e e e aaaaaaaaaaaaeeaeeaaaeaaaaesaeaeeaeeeaeaenesnnnnnnnnnnnnnnns FO8KCF
reduction of upper trapezoidal matrix to upper triangular formccc....... FO8BHF

Left and right eigenvectors of a pair of matrices:
complex upper triangular MALTICEScceeeeeeeeeeeeeeerereeeeeeeeeeeeeeeeeeerreeeeeeeeenennnennnnnnnnns FO8YXF
real quasi-triangular MALTICESceeveeeieeiieiiiiieeeeeeeee e eee e e e e e e e e e e e eeeeas FO8YKF

LQ factorization and related operations:
complex matrices:

APPLY UNIATY MALTIX teeeriiiieeeeiiieieieeeeeeeeeeeeetetee e e e e e e e e eneeeeeeeeeeeseseannneneeeas FO8AXF

FACOTIZATION .eeeeeiieeiiiiieee ettt ettt e e e e e e ettt e e e e e e e e e nneeeeeas FOBAVF

form all or part of UNItary MatriXcceeeeeereeiieeeeeiieeieeeeeeeeeeeeeeeeeeeeeeaaas FO8AWF
real matrices:

apply orthogonal MALIIXccceceeeiiiiieereeeeeeeeeiiieee e e e e e e e e eeeerreeeeeeeeeeeeenneeneeeans FO8AKF

BT 0 u V221110 | B P PP FO8AHF

form all or part of orthogonal MatriXceeeeeiieiiiiiiiiiieeeeieeeees FO8AJF

(DGGEV)

(DGGEVX)
(DGGES)

(DGGESX)

(ZGGQRF)
(DGGQRF)

(ZGGRQF)
(DGGRQF)

(ZTGSJA)

(DTGSJA)
(ZGGSVD)
(DGGSVD)

(ZGGSVP)
(DGGSVP)

(ZGGLSE)

(DGGLSE)

(ZUNMRZ)
(ZGELSY)
(ZGELSS)

(ZGELSD)
(ZTZRZF)

(DORMRZ)
(DGELSY)
(DGELSS)

(DGELSD)
(DTZRZF)

(ZTGEVC)
(DTGEVC)

(ZUNMLQ)
(ZGELQF)
(ZUNGLQ)

(DORMLQ)
(DGELQF)
(DORGLQ)

F08.48 [NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

Operations on eigenvectors of a real symmetric or complex Hermitian matrix, or
singular vectors of a general matrix:

estimate condition NUMDETSceiiiiiiiiiiiiiiteeeeieee et et e e eeieeee e e FOSFLF
Operations on generalized Schur factorization of a general matrix pair:

complex matrix:

estimate condition numbers of eigenvalues and/or eigenvectors FO8YYF
re-order Schur factoriZationccoeeiiiiiiiiiiiiieieetce ettt FO8YTF
re-order Schur factorization, compute generalized eigenvalues and condition
TIUINDEIS .eeeeeiiniieeeinieteeeeeireeeeeenrreeesennaeeeeennnaeeeeennnneeeeenraeeesemnnaeessnnnneesesnnnes FO8YUF
real matrix:
estimate condition numbers of eigenvalues and/or eigenvectors FO8YLF
re-order Schur factoriZationcceieiieieiiiiiiiiiieetee ettt FO8YFF
re-order Schur factorization, compute generalized eigenvalues and condition
TIUINIDEIS .eeeeeiiunieteernieeeeeeeeiteeeeeanreeeesamreeeeeannearesaemeeeesssnnreeeessnmseneessnmeesessamrens FO8YGF

Operations on Schur factorization of a general matrix:
complex matrix:

compute left and/or right €iZeNVECtOrScccccceviieeeieeeireeeiiiieeeee e e e e e eeeeeeeeeen FO8QXF
estimate sensitivities of eigenvalues and/or eigenvectorsccccceeeeeeeeeueeennnnn. FO8QYF
re-order SChur fACtOrIZAtIONciivueniiiiiiiiiee e e e e e s FO8QTF
re-order Schur factorization, compute basis of invariant subspace, and estimate

IS 1R LA T4 18 (1 TR FO8QUF

real matrix:

compute left and/or right €iZenVeCtorsSccccceiieeeieeeieeeeiiiiiieeeeeeeeeeeeeeeeeeeen FO8QKF
estimate sensitivities of eigenvalues and/or eigenvectorsccccceeeeeeeeccnenennenn. FO8QLF
re-order SChUr FACtOTIZAION ..eeuieneiieeieeeieeee ettt e e e e e eeeeeeneenneeanes FOSQFF
re-order Schur factorization, compute basis of invariant subspace, and estimate

SENISIEIVITIES . eeeeeieeeeeee ettt et e e et e et e et e e ea e e e emee e et e e eaneseemneeenaneeenanns FO8SQGF

Overdetermined and underdetermined linear systems
complex matrices:

solves an overdetermined or undetermined complex linear system FOBANF
real matrices:
solves an overdetermined or undetermined real linear systemcccccccueeeeeee. FOSAAF

QL factorization and related operations:
complex matrices:

APPLY UNIATY MALTIX weeeriiiieeeeiiiiiieeee e e e eeeeeiteeee e e e e e e e e eenereeeeeeeeeseeennnnneeeeaas FO8CUF

R Te 0 u V221110 | LU PP FO8CSF

form all or part of UNItary MatriXcceeeeeerieieieeieieeeieeeeeeeeeeeeeeeeeeeeeeeees FO8CTF
real matrices:

apply orthogonal MALIIXccccceeiiiiireeeeeeeeeeeiieee e e e e e e e e eeeerreeeeeeeeeeeeenneneeeeaas FO8CGF

FACLOTIZATION ...eeeeiiiiiiiiieee e e e eeeettete e e e e e e e e ettt ee e e e e e e e s e nnneeeeaeeeeeeasaannnnnneneans FO8CEF

form all or part of orthogonal MAatriXceeeeeeieiiiiiiiiiieeeeeeeaaes FO8CFF

OR factorization and related operations:
complex matrices:

APPLY UNIATY MALIIX 1eeeieiiieeeeiiiiiieeeeeeeeeeeeeiiteeeeeeeeeeseeennnrreeaaaeaeeaasannnnnneneeees FO8AUF
FACLOTIZATION ..eeeeieiiitieeieiteee ettt ettt e ettt e e s et e e s et e e e e meeeeeseameaeeens FOBASF
factorization,
with column pivoting, using BLAS-3o, FO8BTF
factorization, with column PivVOLINGccceeeeeriiiiiiiiiiiiiiieeeeeeeeeeee e FO8BSF
form all or part of UNitary MAatriXceeeeeeeeiiiiiieeeeee e e e e e e e FO8ATF
real matrices:
apply orthogonal MAIIX ...ceeeeeeeiiiiiieeeei ettt e e e e e e e eeeeeeeas FO8AGF
B Te 0 u V221110 | LU PP FOSAEF
factorization,
with column pivoting, using BLAS-3 ...t FO8BFF
factorization, with cOlUMN PIVOLING ..eceviieeeeiiiiiiiieiee e e e e e e FO8BEF
form all or part of orthogonal mMatriXccccccciiiiiiiiiiiieeiiieeee e, FO8AFF
Reduction of a pair of general matrices to generalized upper Hessenberg form,
orthogonal reduction, real MALIICEScceeeeeeeeeeiueeiiieeeeeeeeeeeeeieerereeeeeeeeeeeennneeeeeeeas FOSWEF
unitary reduction, COMPIEX MALIICESuvvrrrrererrieeeeiiiiiiiieeeeeeeeeeeeeerrreeeeeaeeseeeaannnns FO8WSF

[NP3657/21]

(DDISNA)
(ZTGSNA)
(ZTGEXC)
(ZTGSEN)

(DTGSNA)
(DTGEXC)

(DTGSEN)
(ZTREVC)
(ZTRSNA)
(ZTREXC)
(ZTRSEN)
(DTREVC)
(DTRSNA)

(DTREXC)

(DTRSEN)

(ZGELS)

(DGELS)

(ZUNMQL)
(ZGEQLF)
(ZUNGQL)

(DORMQL)
(DGEQLF)
(DORGQL)

(ZUNMQR)
(ZGEQRF)

(ZGEQP3)
(ZGEQPF)
(ZUNGQR)

(DORMQR)
(DGEQRF)

(DGEQP3)
(DGEQPF)
(DORGQR)

(DGGHRD)
(ZGGHRD)

F08.49

Introduction — F08 NAG Fortran Library Manual

Reduction of eigenvalue problems to condensed forms, and related operations:
complex general matrix to upper Hessenberg form:

apply orthogonal MAIIX ...cceeeeeeeiiiiieeeei ittt e e e e e e e e eeeeeeeas
form orthogonal MALIIXceeeiieeeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeenennnannnnns
reduce to Hessenberg formoooeiiiiiiiiiiiiiiiii e
complex Hermitian band matrix to real symmetric tridiagonal form
complex Hermitian matrix to real symmetric tridiagonal form:
APPLY UNIATY MALIIX teeeiiiiieeeeiiiiiieeeeeeeeeeeeeiteeeeeeeeeeeeeeennnrreeaeeeeeesssannnnnnaeeas
apply unitary matrix, packed StOrageceeeeieieeiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeaaaas
fOrmM UNIATY MAIIX .oevviiiiiiiiiieereaeeeensssnnnnnnnnnnnnnnns
form unitary matrix, packed StOTAZEcccceeoueriireeeeeeeeeeeciiireeeeeeeeeeeeeeneeeeeeens
reduce to tridiagonal fOrmcccccoiiiiiiiiiiiiiice e
reduce to tridiagonal form, packed StOTAgecccccvriireieeiiieeeiiiiiieieeeee e,
complex rectangular band matrix to real upper bidiagonal formcccccuueeeeenn.
complex rectangular matrix to real bidiagonal form:
APPLY UNIATY MALTIX .ovviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeseeeeeeaeeeeeeeeeeeeerensnssnsssnnnnnnnnnnnnnnns
fOrm UNIATY MALTIX .eeeeiiiieeeeeiiiiie e e e e e e eeereee e e e e e e e e e eaeereeeeeeeeeeeeennnnnneeeaas
reduce to bidiagonal fOrmcccccouiiiiiiiiiiiiieceeeee e
real general matrix to upper Hessenberg form:
apply orthogonal MALIIXeeeeeeieeeiieeeeeeeeeeeeeeeeeeeeeeeeereeeeeeereererrreaseeenennnnnnnnnnnns
form orthogonal MALIIXueieieiieeeieeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeee e e nnennnas
reduce to Hessenberg formcccccviiiiiiiiiiiieceiiiiieee et e e
real rectangular band matrix to upper bidiagonal formccccceiiiiiiiiiiiiiinnnnnn.
real rectangular matrix to bidiagonal form:
apply orthogonal MALIIXeeeieeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerreerreasesannnnnnnnnnnnnns
form orthogonal MALIIXueiieiiieeieeeeeeeee e eeeee e eeeeeeeeeeeeee e e e eneeaneas
reduce to bidiagonal fOrmcccccoiiiiiiiiiiiieeceeee e
real symmetric band matrix to symmetric tridiagonal formccccceeeeieiinnnnennn.
real symmetric matrix to symmetric tridiagonal form:
apply orthogonal MAIIX ...ceeeeeeeiiiiieeeee ittt e eeereee e e e e e e e e eeeeeeeeas
apply orthogonal matrix, packed StOragecccceiiiiiiiiiiiiiiiieeeieans
form orthogonal MALIIXeeiieieieeieeeeeeeeeeeee e e e e eeeeeeeeeeee e e e ee e e e eaeeeeeennnnnnennnaas
form orthogonal matrix, packed StOrageccccceeeeiiiiieeeiiiiiiiiieeeeeee e,
reduce to tridiagonal formcccccoiiiiiiiiiiiiieceeee e
reduce to tridiagonal form, packed StOTAZEccccccevriiiieiiiiiieeeiiiiiieeeee e
Reduction of generalized eigenproblems to standard eigenproblems:
complex Hermitian-definite banded generalized eigenproblem Ax = ABx

complex Hermitian-definite generalized eigenproblem Ax = ABx, ABx = Ax or
BAX = A ettt ettt ettt e et e e et e e e s e aaeee s
complex Hermitian-definite generalized eigenproblem Ax = ABx, ABx = Ax or
BAx = Ax, packed StOTAZEccceeiiiiiiiiiiiiiiiiireeereeeee e e e e e e e e e e e e eeeeeeeeeeeeeeenennnnnns
real symmetric-definite banded generalized eigenproblem Ax = ABXccccvuuueeeeenn.
real symmetric-definite generalized eigenproblem Ax = ABx, ABx = Ax or
BAX = A ettt ettt ettt e et e e e e e aeaeee s
real symmetric-definite generalized eigenproblem Ax = ABx, ABx =)x or
BAx = Ax, packed StOTAZEceeeeiiieeeeiiiiiiieeee et e e e e e e e e e e e e
RQ factorization and related operations:
complex matrices:
APPLY UNIATY MALIIX teeeiiiiieeeeiiiiiiieeeeeeeeeeeeeeiteeeeeeeeeeeeeennrreeaeeeeeesasaannnnnnneeas
FACLOTIZATION ..eeieieiiiiieeieiteee ettt ettt e ettt e e e e eete e e eabtee e e e breeeeseameaeeens
form all or part of Unitary MatriXoeeeeeeiiiiiiieeeeeee et
real matrices:
apply orthogonal MALIIXeccieereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e eeeeeeaaeennnnnnnnnnnnnnns
FACLOTIZATION ...eiiiiiiiiietieete ettt ettt ettt e e ettt et e e et e e e e et e e e e abeeeeeeaeeaeeas
form all or part of orthogonal MatriXcccccciiiriiiiiiiiieiiiiieee e,
Singular value decomposition
complex matrix:
using a divide-and-conquer algorithmcccceveeiiiiiiieiiiiereeeee e
using bidiagonal QR IEratioNccccccceviiireeereereeeeiiiirereeeeeeeeeeeeannerereeeeeeseaans

F08.50

FOSNUF (ZUNMHR)
FOSNTF (ZUNGHR)
FO8NSF (ZGEHRD)
FO8HSF (ZHBTRD)

FOSFUF (ZUNMTR)
FOSGUF (ZUPMTR)
FOSFTF (ZUNGTR)
FO8GTF (ZUPGTR)
FO8FSF (ZHETRD)
FO8GSF (ZHPTRD)
FOSLSF (ZGBBRD)

FOSKUF (ZUNMBR)
FOBKTF (ZUNGBR)
FO8KSF (ZGEBRD)

FO8NGF (DORMHR)
FOSNFF (DORGHR)
FOBNEF (DGEHRD)
FOBLEF (DGBBRD)

FOSKGF (DORMBR)
FOSKFF (DORGBR)
FOBKEF (DGEBRD)
FOBHEF (DSBTRD)

FOSFGF (DORMTR)
FOSGGF (DOPMTR)
FOSFFF (DORGTR)
FO8GFF (DOPGTR)
FOSFEF (DSYTRD)
FOSGEF (DSPTRD)

FO8USF (ZHBGST)
FO8SSF (ZHEGST)

FO8TSF (ZHPGST)
FOBUEF (DSBGST)

FO8SEF (DSYGST)
FOSTEF (DSPGST)
FO8CXF (ZUNMRQ)
FO8CVF (ZGERQF)
FOSCWF (ZUNGRQ)
FOSCKF (DORMRQ)

FOBCHF (DGERQF)
FO8CJF (DORGRQ)

FO8KRF (ZGESDD)
FOBKPF (ZGESVD)

[NP3657/21]

F08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — F08

real matrix:

using a divide-and-conquer algorithmccceeeeiiiiiiiiiiiiiiieecieeeee e FO8KDF (DGESDD)
using bidiagonal QR TETAIONccccceviiiiieriiiiieeriiiiiiieeeee e e e e eeeereeee e e e e e e ee e FO8KBF (DGESVD)
Solve generalized Sylvester equation:
COMPIEX MALTICES .vvvvrrrreeeeeeeeeeeieerreteeeeeeaaeaeesnnneeereeeeeeaaaaaaannnssssnsaaeeeesesassnsnssssssees FO8YVF (ZTGSYL)
TEAL MNALTICES .vviieiieiiiieeeeeiiieeeeeiieeeeeeitteeeeeeeeaeeeeeseaseseeeeesssseeesanssnaeesassseeaeanssenaaaanns FO8YHF (DTGSYL)
Solve reduced form of Sylvester matrix equation:
COMPIEX MAICES .evvrrrreeerrieeeeeeiieirttteeeeeeeaaaaaaanneaeeeeeeeeeeaaaaaannnneeaeaaeeeesssasassnsnseesees FO8QVF (ZTRSYL)
TEAL IMALTICES oeeneeenneeeeeeeee et e et e e e e e e e eeneeenesaaeennsannsannesannsennsaneennesannsenneeanns FOSQHF (DTRSYL)
Split Cholesky factorization:
complex Hermitian positive-definite band matriXceeeeeeeiiiiiieieieeeeeeeecieeeeen. FO8UTF (ZPBSTF)
real symmetric positive-definite band mMatriXccccceeeieiieeeeiiiiiiieeee e FO8UFF (DPBSTF)

6 Routines Withdrawn or Scheduled for Withdrawal

None.

7 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Arioli M, Duff I S and De Rijk P P M (1989) On the augmented system approach to sparse least-squares
problems Numer. Math. 55 667-684

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873-912

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.
Anal. 10 241-256

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141-152
Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer—
Verlag

[NP3657/21] F08.51 (last)

	F08 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Linear Least-quares Problems
	2.2 Orthogonal Factorizations and Least-quares Problems
	2.2.1 QR factorization
	2.2.2 LQ factorization
	2.2.3 QR factorization with column pivoting
	2.2.4 Complete orthogonal factorization
	2.2.5 Other factorizations

	2.3 The Singular Value Decomposition
	2.4 The Singular Value Decomposition and Least-quares Problems
	2.5 Generalized Linear Least-quares Problems
	2.6 Generalized Orthogonal Factorization and Generalized Linear Least-quares Problems
	2.6.1 Generalized QR Factorization
	2.6.2 Generalized RQ Factorization
	2.6.3 Generalized Singular Value Decomposition (GSVD)

	2.7 Symmetric Eigenvalue Problems
	2.8 Generalized Symmetricefinite Eigenvalue Problems
	2.9 Packed Storage for Symmetric Matrices
	2.10 Band Matrices
	2.11 Nonsymmetric Eigenvalue Problems
	2.12 Generalized Nonsymmetric Eigenvalue Problem
	2.13 The Sylvester Equation and the Generalized Sylvester Equation
	2.14 Error and Perturbation Bounds and Condition Numbers
	2.14.1 Least-quares problems
	2.14.2 The singular value decomposition
	2.14.3 The symmetric eigenproblem
	2.14.4 The generalized symmetricefinite eigenproblem
	2.14.5 The non-ymmetric eigenproblem
	2.14.6 Balancing and condition for the non-ymmetric eigenproblem
	2.14.7 The generalized non-ymmetric eigenvalue problem
	2.14.8 Balancing the generalized eigenvalue problem
	2.14.9 Other problems

	2.15 Block Partitioned Algorithms

	3 Recommendations on Choice and Use of Available Routines
	3.1 Available Routines
	3.1.1 Driver routines
	3.1.1.1 Linear least-quares problems (LLS)
	3.1.1.2 Generalized linear least-quares problems (LSE and GLM)
	3.1.1.3 Symmetric eigenvalue problems (SEP)
	3.1.1.4 Nonsymmetric eigenvalue problem (NEP)
	3.1.1.5 Singular value decomposition (SVD)
	3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP)
	3.1.1.7 Generalized non-ymmetric eigenvalue problem (GNEP)
	3.1.1.8 Generalized singular value decomposition (GSVD)

	3.1.2 Computational routines
	3.1.2.1 Orthogonal factorizations
	3.1.2.2 Generalized orthogonal factorizations
	3.1.2.3 Singular value problems
	3.1.2.4 Generalized singular value decomposition
	3.1.2.5 Symmetric eigenvalue problems
	3.1.2.6 Generalized symmetricefinite eigenvalue problems
	3.1.2.7 Nonsymmetric eigenvalue problems
	3.1.2.8 Generalized non-ymmetric eigenvalue problems
	3.1.2.9 The Sylvester equation and the generalized Sylvester equation

	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Band storage
	3.3.4 Tridiagonal and bidiagonal matrices
	3.3.5 Real diagonal elements of complex matrices
	3.3.6 Representation of orthogonal or unitary matrices

	3.4 Parameter Conventions
	3.4.1 Option parameters
	3.4.2 Problem dimensions
	3.4.3 Length of work arrays
	3.4.4 Errorandling and the diagnostic parameter INFO

	4 Decision Trees
	4.1 General Purpose Routines (eigenvalues and eigenvectors)
	4.2 General Purpose Routines (singular value decomposition)

	5 Index
	6 Routines Withdrawn or Scheduled for Withdrawal
	7 References

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

